首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
分别以铜包覆石墨和普通石墨作为润滑组元,采用放电等离子烧结技术制备了两种铜基粉末冶金摩擦材料. 在对两种材料进行微观组织、力学及物理性能检测和对比之后,利用MM1000-Ⅱ型惯性制动试验台测试了不同条件下两者的制动摩擦磨损性能,并通过对试验后两种材料的摩擦表面及其三维形貌特征、表面及近表层主要元素分布特点、磨屑特征和摩擦表面物相进行微观分析,研究了石墨表面金属包覆处理对制动条件下铜基粉末冶金摩擦材料摩擦学行为的影响,并结合热力学相关理论解释了引起两种材料制动摩擦学行为差异的原因. 结果表明:石墨表面经铜包覆处理后,会使烧结时石墨与Cu基体间的界面结合得到明显改善,且材料的硬度、致密度和导热系数也可显著提高. 随着制动速度的提高,两种材料的平均摩擦系数和磨损率均逐渐降低;在相同的制动条件下,采用铜包覆石墨作润滑剂时,材料的平均摩擦系数和磨损率均较低,同时材料摩擦表面的几何质量较好. 提高制动速度均能够促进两种材料表面形成摩擦膜,但分别采用铜包覆石墨和普通石墨作润滑组元时,材料表面摩擦膜的形成机制存在明显差异. 采用铜包覆石墨时,材料表面主要形成氧化膜,而采用普通石墨时,由于材料表面存在的较多石墨对氧化反应具有较强的抑制作用,而使得此时表面主要形成石墨膜,且其对材料表面的保护效果不及氧化膜.   相似文献   

2.
石墨含量对纸基摩擦材料摩擦磨损性能的影响   总被引:2,自引:2,他引:0  
采用湿法工艺制备不同石墨含量的纸基摩擦材料,通过惯量试验方法研究石墨含量对纸基摩擦材料的力矩曲线及动、静摩擦系数和磨损率的影响规律;利用扫描电子显微镜观察磨损表面形貌并分析其磨损机理.结果表明:随着石墨含量增加,摩擦力矩曲线尾部翘起程度减小,趋于平整;动、静摩擦系数降低,磨损率减小;不含石墨的纸基摩擦材料的磨损表面分布着尺寸较大磨粒且出现微裂纹;随着石墨含量增加,摩擦表面形成了润滑性能良好的固体润滑膜,从而降低了材料的磨损率.  相似文献   

3.
溅射二硫化钼膜在不同润滑条件下的摩擦学性能分析   总被引:1,自引:1,他引:0  
通过MoS2膜/钢、钢/钢摩擦副分别在干摩擦、油和脂润滑条件下的球-盘式摩擦学试验,对比分析了润滑条件、载荷、滑动速度对MoS2膜摩擦系数的影响.利用原子力显微镜(AFM)对膜层磨损形貌进行表征,研究润滑条件对膜层磨损寿命的影响.结果表明:在4122仪表油和FAG脂润滑下,MoS2膜在零速启动、中低速情况下的动、静摩擦系数均比MoS2干膜和钢/钢摩擦副的要低;固-液复合润滑时的MoS2膜的耐磨性均比干膜摩擦时有所降低,MoS2干膜的磨损率约为8.1×10-7mm3/(N.m),在油和脂润滑时其磨损率分别约为2.4×10-5mm3/(N.m)和5.5×10-6mm3/(N.m).  相似文献   

4.
采用激光熔覆技术在304不锈钢表面制备了Ni60/h-BN自润滑耐磨复合涂层,对涂层在600℃(去应力退火)进行1 h和2 h热处理,分析了热处理前后复合涂层的显微组织、硬度和摩擦学性能的变化.结果表明:三种涂层中,热处理1 h后涂层的显微硬度最大(最高值HV0.5765.0),在10 N干摩擦条件下,其摩擦系数为0.39,磨损率为3.37×10~(–6)mm/(Nm),该涂层表现出最好的耐磨减摩性能,磨损机理主要表现为轻微的磨粒磨损;未热处理的涂层摩擦系数为0.53,磨损率为6.39×10~(–6) mm/(Nm),磨损机理主要表现为脆性断裂、黏着磨损和磨粒磨损;热处理2 h后的涂层摩擦系数为0.39,磨损率为5.29×10~(–6)mm/(Nm),磨损机理主要表现为磨粒磨损和轻微黏着磨损.在本文试验条件下,后热处理1 h可有效提高激光熔覆自润滑耐磨涂层的硬度并改善其耐磨减摩性能.  相似文献   

5.
聚苯硫醚复合材料在柴油润滑状态下的摩擦学性能研究   总被引:1,自引:1,他引:0  
分别以短切碳纤维(SCF)、铜(Cu)、氧化铜(CuO)和硫化铜(CuS)微米颗粒作为填料,通过热压成型制备了系列的聚苯硫醚(PPS)复合材料.利用环-块摩擦磨损试验机,研究了PPS复合材料在柴油润滑状态下的摩擦学性能,结合摩擦表面形貌、转移膜结构和摩擦化学分析,研究了摩擦学机理.结果表明:填充微米颗粒后,PPS复合材料在柴油润滑状态下的摩擦学性能均有不同程度的提高.加入SCF后,PPS表现出最好的耐磨性;Cu和CuS颗粒显著降低PPS的摩擦系数.在此基础上,进一步探究了SCF/Cu、SCF/CuS两组复合填料分别对PPS材料摩擦学性能的影响.研究发现:复合填充SCF和CuS填料后,PPS复合材料的摩擦学性能最佳.SCF和CuS表现出显著的协同效应:SCF提高PPS材料的承载能力和耐磨性;CuS在摩擦界面发生摩擦化学反应,促进具有润滑特性转移膜的形成.  相似文献   

6.
铸造铝青铜合金Cu-14Al-4Fe-Mn的摩擦磨损性能   总被引:7,自引:1,他引:7  
用往复式摩擦磨损试验机考察了新型高强度、高耐磨性铸造铝青铜合金Cu-14Al-4Fe-Mn(代号HSWAB)的摩擦磨损性能,利用形貌扫描电子显微镜观察分析了合金磨损表面形貌,探讨了其磨损机理.结果表明,HSWAB合金在干摩擦和油润滑条件下的摩擦磨损性能及磨损机理存在明显差异.在干摩擦条件下,合金中脱落的硬质点及氧化物等磨粒导致较为严重的磨粒磨损,摩擦系数高、磨损率大,主要磨损机理为磨粒磨损、粘着磨损、氧化磨损及疲劳磨损.在油润滑条件下,摩擦系数和磨损率均显著降低,疲劳磨损和氧化磨损受到抑制,主要磨损机理为磨粒磨损和粘着磨损.Cu-14Al-4Fe-Mn合金在油润滑条件下的摩擦系数低达0.08,磨损率低达3.7×10-6g/m,是一种优良的耐磨材料.  相似文献   

7.
采用偏压辅助增强热丝CVD法在硬质合金衬底上制备常规金刚石薄膜和超细晶粒金刚石薄膜,在往复式球-盘摩擦磨损试验机上考察金刚石薄膜在干摩擦和水润滑条件下的摩擦磨损性能,分别采用扫描电子显微镜、拉曼光谱仪和能谱仪分析金刚石薄膜的表面形貌特性、结构特征及其摩擦表面残余物质的组成.结果表明,常规金刚石薄膜和超细晶粒金刚石薄膜在水润滑下的摩擦系数分别约为0.25和0.22,超细晶粒金刚石薄膜对偶件的磨损率仅为6.94×10-6 mm3/(Nm),显示出优异的减摩性能,可作为良好的水润滑摩擦副涂层材料.  相似文献   

8.
为提升TA2合金的摩擦学性能,选用Ti-TiC-WS_2复合粉末在TA2合金表面激光熔覆钛基高温自润滑耐磨复合涂层.系统地分析了涂层的物相、显微组织结构和显微硬度;分别在室温(20℃)、250℃和500℃下测试了基体和涂层的摩擦学性能,并分析了其磨损机理.结果表明:涂层的显微硬度(约HV_(0.5)1 005.4)是基体(HV_(0.5)190)的5倍;由于增强相TiC/(Ti,W)C_(1–x)和自润滑相Ti_2SC/TiS的综合效应,相比基体,复合涂层在所有试验温度下均具有较小的摩擦系数和磨损率;随着温度的升高,涂层的摩擦系数先变小后升高,在250℃下具有最低的摩擦系数(0.257);涂层的磨损率随温度的升高一直降低,在500℃下磨损率最低[0.487×10~(–5) mm~3/(Nm)].  相似文献   

9.
采用MM-200型摩塔磨损试验机考察了45^#钢/球墨铸铁摩擦副在650SN基础油和含羟基硅酸盐矿物复合微粉的650SN基础油(KF-1)润滑下的摩擦磨损性能,结果表明:在650SN基础油润滑下的摩擦系数和磨损率随试验时间增加变化较小;而在KF-1润滑下,试验初期的摩擦系数和磨损率比基础油润滑下的稍大,随着试验时间的延长,相应的摩擦系数和磨损率同基础油润滑下的相比明显降低.磨损表面显微硬度测试结果表明,在KF-1润滑下45^#钢磨损表面形成了多孔摩擦改性层,硬度明显提高,因而摩擦磨损性能显著改善.  相似文献   

10.
铜-石墨材料摩擦学行为的研究   总被引:2,自引:0,他引:2  
采用粉末冶金技术制备了铜-石墨烧结材料,通过定速摩擦试验机,研究了石墨含量与第三体形态的关系及对材料摩擦性能的影响.结果表明:石墨含量小于15%时,石墨对材料的孔隙度及摩擦温度影响明显,表现出材料的摩擦磨损性能与石墨含量密切相关,这归因于干摩擦条件下摩擦表面形成的含有石墨粒子的第三体对摩擦性能作用明显.石墨含量低,形成的第三体金属成分高,硬质金属的犁沟作用导致摩擦系数和磨损率较高.随石墨含量增加,第三体中的石墨含量增加,这导致第三体致密程度和黏着程度降低,松散易流动的第三体有利于降低犁沟程度,从而起到降低和稳定摩擦系数、减少磨损率的作用.  相似文献   

11.
以聚氨酯海绵为三维连续网络结构模板,采用浸渍法在聚氨酯海绵骨架表面均匀涂敷石墨浆料构筑具有三维连续网络结构的石墨骨架,然后在石墨骨架中填充铜合金粉,经排胶-热压烧结工艺制备石墨相和金属铜呈三维双连续复合型结构的铜/石墨自润滑复合材料.研究考察了三维双连续复合结构对材料承载能力和抗冲击破坏能力的影响,并探究了材料在重载作用下的摩擦磨损行为.结果表明:通过三维双连续结构设计,能够有效改变石墨相的富集状态和分布形式,并借助连续金属铜基体的高承载作用,显著提升材料在重载作用下的减摩抗磨性能.在180 N载荷下与轴承钢相对摩擦时,块体663铜合金和均相铜/石墨复合材料均出现急剧磨损并与摩擦配副发生“卡咬”现象,其中块体663铜合金与配副由于“卡咬”严重而停止试验,均相铜/石墨复合材料的磨痕深度达1.38 mm.然而,具有三维双连续结构的铜/石墨复合材料的摩擦系数可保持约在0.12左右,磨痕深度为0.16 mm,展现出优异的长时间耐磨损性能,磨损率约为5.3×10-6 mm3/(N·m).同时,该结构设计能够大幅减少石墨相与金属铜间的弱界面数量,并有效利用连续石墨相对裂纹传播路径的“歧化”引导和金...  相似文献   

12.
本文中采用激光微加工法在TC4钛合金表面制备了不同形貌与分布密度的微观织构,将表面织构、热氧化膜与PTFE润滑薄膜相复合制备了自润滑复合耐磨结构,同时考察了滑动条件下织构形貌及织构密度对这一复合结构摩擦磨损性能的影响.结果表明:与未织构面的润滑薄膜相比,织构面薄膜的结合力明显增大,表面织构与润滑薄膜的结合显著增强了材料的减摩抗磨性能.在最优的织构密度下,含有薄膜的织构化钛合金表面的磨损率可降低至1.5×10-6 mm3/(N·m),较未织构面润滑薄膜的磨损率降低了99.3%.而将经热氧化的织构表面与润滑薄膜的结合则进一步提升了材料的耐磨性,热氧化织构面润滑薄膜的磨损率最低可达8.0×10-7 mm3/(N·m),与未热氧化的织构面润滑薄膜相比,磨损率降低了46.1%.在相同的织构间距条件下,线型热氧化织构面显示出低而稳定的摩擦系数与极低的磨损量,这主要得益于高密度微织构对润滑介质的有效补充以及高硬度热氧化膜的耐磨性起到了协同减摩抗磨的作用.  相似文献   

13.
铸造锌-石墨复合材料的摩擦学特性   总被引:4,自引:0,他引:4  
作者以高铝锌基合金ZA-27为基体,使之与石墨在熔融状态下复合成为均匀浆料,经过挤压铸造成型,得到了几种石墨含量不同的锌-石墨复合材料。微观结构分析结果表明,金属-石墨界面结合状态良好,石墨分布均匀。这种材料在石墨含量低于5%(wt,下同)时的承载能力比青铜ZQSn6-6-3的高。其线膨胀系数随着石墨含量的增加而下降。在本试验条件下,随着石墨含量的增加,复合材料进入稳定磨损阶段所需要的时间缩短,滑动过程的平稳性增大,摩擦表面温度降低,摩擦系数明显下降,磨损率减小;在石墨含量达到6.2%时,锌-石墨复合材料的减摩性。耐磨性和相对抗咬合性都远比基体合金ZA-27的好,表明锌-石墨复合材科是一种新型的具有良好开发应用前景的减摩耐磨材料。  相似文献   

14.
表面织构对内燃机缸套-活塞环系统摩擦性能的影响   总被引:2,自引:0,他引:2  
设计了一种微凹坑表面织构,通过数控精密机械加工的方法制备于缸套切片表面,利用往复式摩擦磨损试验机研究了微凹坑织构在不同工况下的摩擦性能和对内燃机缸套-活塞环摩擦副摩擦性能的影响.试验数据表明:与无织构化表面相比,微凹坑织构的平均摩擦系数均有不同程度的变化,最大降幅达41.83%,最大增幅达33.68%.当微凹坑织构工作在合适的工况条件时,其摩擦性能比无织构化表面有明显的改善.对于某种具有固定几何参数的表面织构,存在一个合适工况条件使其能够最有效地改善摩擦学性能,该工况可为进一步研究提供依据并便于实际应用.此外,转速是影响表面织构改善表面润滑性能的主要因素,试样在不同转速下具有不同的接触电阻阻值变化规律和不同的摩擦系数变化趋势.而在不同转速下,载荷的变化对表面摩擦性能的影响规律也具有明显的差异性.  相似文献   

15.
利用激光加工技术在钛合金表面构建不同尺寸的圆形微坑织构图案. 利用MS-T3001型试验机测试了圆形微坑织构、离子液体[1-丁基-3-甲基咪唑三氟甲基磺酰胺盐和十四烷基三丁基季鏻双(2-乙基己基)磷酸盐]及二者构成润滑组合的摩擦磨损性能. 利用金相显微镜观察圆形微坑织构的尺寸和表面形貌,利用扫描电镜分析摩擦过程前后织构化表面的形貌,采用ANSYS Fluent软件模拟分析表面织构参数和离子液体理化性质对摩擦学性能的影响. 结果表明,表面织构、离子液体、表面织构与离子液体的复合体系均展示了良好的减摩抗磨性能. 优化表面织构与离子液体的组合能够提升润滑体系的摩擦学性能. 表面织构与离子液体组成的复合润滑体系,摩擦系数随圆形微坑织构直径的增大而减小,归因于圆形微坑织构能够储存磨屑和离子液体并形成稳定的离子液体润滑薄膜,黏度较大的离子液体在收敛区间产生楔形效应,导致对上摩擦副升力增大.   相似文献   

16.
采用真空热压烧结工艺制备了石墨相形态为粉体(粒径约5 μm)、鳞片状(粒径445~636 μm)和近球形颗粒状(粒径200~300 μm)的铜/石墨复合材料,考察了以Al2O3陶瓷为摩擦副条件下石墨相形态对铜/石墨复合材料摩擦磨损性能及作用机制的影响,并探讨了材料在外载作用下的可靠性. 结果表明:石墨相形态不同时,石墨相和金属铜在材料中的分布方式也随之改变,进而影响到材料的摩擦学性能和力学性能. 在保持复合材料中石墨相含量不变的基础上,将石墨相形态从微米级粉体转变为各向异性的大块鳞片状石墨,再转变为各向同性较好的大尺寸近球形颗粒状石墨时,石墨相在材料中与金属铜形成的弱界面含量逐渐减小,金属铜的三维连续性变得更好. 材料在受到外载破坏时,从石墨相与铜基体界面萌生裂纹的扩展应力可被连续金属铜及时吸收钝化,使材料抵抗裂纹破坏的能力明显提高. 当石墨相为近球形颗粒状时,材料的抗弯强度、抗压强度、断裂韧性和冲击韧性分别高达155.4±3.6 MPa、353.5±24.7 MPa、5.3±0.6 MPa·m1/2和4.0±0.4 J/cm2. 此外,石墨相形态对材料的摩擦学性能也有重要影响,当石墨相以粉体形态存在时,石墨相与金属铜间形成的弱界面越多,铜基体的连续程度被石墨显著割裂,在摩擦力作用下割裂的铜颗粒易被剥离进入摩擦界面,与摩擦副形成“三体”磨损,导致材料的大量磨损. 当石墨相以鳞片状形态存在时,石墨相的聚集程度相对增加,使得金属铜的连续程度相对提高,可避免发生类似复合粉体形态石墨材料的磨损. 但是,鳞片状石墨呈大块片层状,形状各向异性,随着材料表面鳞片石墨的摩擦损耗,或者垂直于材料表面的鳞片石墨较多时,将造成摩擦副间摩擦系数较大的波动. 当石墨相为近球形颗粒状时,较为均匀的石墨相空间分布状态、三维连续结构的铜基体和润滑相/承载基体呈现的软/硬交替结构使得铜/石墨复合材料具有低且平稳的摩擦系数以及优异的减摩抗磨性能. 本文中以Al2O3栓为摩擦对偶时,复合材料的摩擦系数和磨损率分别低至0.13±0.02和5.4×10?6 mm3/(N·m).   相似文献   

17.
本文中采用多弧离子镀系统在Ti-6Al-4V合金(TC4)上沉积TiSiN/Ag纳米多层涂层. 使用X射线衍射(XRD)、X射线光电子能谱(XPS)和扫描型电子显微镜(SEM)表征涂层的成分和结构,并使用纳米压痕测试其硬度. 用Rtec MFT500摩擦磨损试验机对涂层在海水环境中的摩擦磨损性能进行测试. 结果表明:涂层具有致密的结构和清晰的多层界面,TiSiN层与Ag层交替沉积,涂层中包含TiN、Ag和Si3N4相,非晶Si3N4包裹纳米晶TiN. 相比TC4合金基体,沉积TiSiN/Ag纳米多层涂层后,摩擦系数在大气环境和海水环境均能下降0.15以上,磨损率降低两个数量级. 人工海水中摩擦状态下材料出现腐蚀摩擦交互作用,主要损耗形式为腐蚀对磨损的促进,TiSiN/Ag纳米多层涂层的耐磨蚀性能远优于基体材料.   相似文献   

18.
采用激光加工技术在不锈钢表面构造深度不同的沟槽型织构图案,通过UMT摩擦磨损试验机测试了不同织构深度的不锈钢表面在PAO6油润滑条件下的摩擦磨损性能,利用表面轮廓仪和扫描电镜(SEM)对摩擦前后的沟槽形貌进行表征分析,采用计算流体动力学(CFD)方法对试验进行模拟并计算,结合ANSYS Fluent软件模拟分析结果,探究了沟槽织构深度对不锈钢表面在油润滑条件下的摩擦学性能的影响机理. 研究结果表明:加工的沟槽织构及其织构深度显著影响不锈钢表面在PAO油润滑条件下的摩擦磨损行为,织构深度为10 μm的不锈钢表面获得最好的抗磨和减摩效果,与未织构表面相比,其摩擦系数与磨痕宽度降低了60%以上. 这主要是由于织构深度为10 μm的不锈钢表面在摩擦过程中,润滑油通过其收敛区域时产生了很好的楔效应,润滑油产生的升力较大,改善了该织构表面在摩擦过程的润滑状态,从而呈现很好的摩擦学性能.   相似文献   

19.
CrN和CrAlN涂层海水环境摩擦学性能研究   总被引:3,自引:1,他引:2  
采用多弧离子镀在316L不锈钢上沉积CrN和CrAlN涂层.采用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)和扫描型电子显微镜(SEM)表征涂层的成分和结构,并用纳米压痕和划痕仪测试其硬度和结合力.采用UMT-3往复式摩擦磨损试验机对涂层在海水环境中的摩擦磨损性能进行测试.结果表明:CrN和CrAlN涂层在海水中摩擦系数相差不大,而316L摩擦系数明显大于涂层,且摩擦系数震荡剧烈,表明316L在海水中润滑性较差.涂层在海水中磨损率远小于316L,且CrAlN涂层比CrN涂层在海水环境中具有更优的耐磨性.CrN涂层的磨痕表面出现大量剥落坑,这是由于CrN涂层表面的大颗粒剥落形成的.而CrAlN涂层致密的结构、较为优越的耐蚀性以及摩擦时产生的具有自润滑效果的Al2O3保护层,使其在硬度值较低的情况下仍具有优异的耐磨性.因此海水环境中摩擦性能需综合考虑材料的机械性能、结构、耐蚀性以及耐磨性.  相似文献   

20.
几种铝锡硅铜合金的摩擦磨损特性   总被引:3,自引:2,他引:3  
采用环-块摩擦磨损试验机,考察了含Si质量分数为1%~5%的Al-20Sn-Si-1Cu合金及传统的Al-20Sn-1Cu合金的摩擦磨损性能.结果表明:几种Al-20Sn-Si-1Cu合金的磨损率低于Al-20Sn-1Cu合金的磨损率,并且随Si含量的增加而降低.干摩擦时,摩擦因数随Si含量的增加无明显变化;油润滑时摩擦因数则随Si含量的增加而略微减小.两类合金的摩擦因数均随滑动速度的增加而减小,随摩擦时间的增加先增加后减小并趋于稳定.磨损表面的SEM分析表明:Al-20Sn-Si-1Cu合金在干摩擦下的磨损机制主要是磨粒磨损和氧化磨损,而Al-20Sn-1Cu合金则包括粘着、疲劳及磨粒磨损等多种形式.在油润滑下,两者的磨损机理则分别为犁削作用和疲劳磨损及分层磨损.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号