首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A simultaneous preconcentration procedure for the determination of Cd(II), Ni(II), Co(II) and Cu(II) by atomic absorption spectrometry is described. The method is based on solid phase extraction of the metal ions on dithizone loaded on naphthalene in a mini-column, elution with nitric acid and determination by flame atomic absorption spectrometry. The sorption conditions including NaOH concentration, sample volume and the amount of dithizone were optimized in order to attain the highest sensitivity. The calibration graph was linear in the range of 0.5–75.0 ng ml?1 for Cd(II), 1.0–150.0 ng ml?1 for Ni(II), 1.0–150.0 ng ml?1 for Co(II) and 1.0–125.0 ng ml?1 for Cu(II) in the initial solution. The limit of detection based on 3Sb was 0.13, 0.32, 0.33 and 0.43 ng ml?1 for Cd(II), Ni(II), Co(II) and Cu(II), respectively. The relative standard deviations (R.S.D) for ten replicate measurements of 20 ng ml?1of Cd(II), 100 ng ml?1 of Ni(II), Co(II) and 75 ng ml?1 of Cu(II) were 3.46, 2.43, 2.45 and 3.26%, respectively. The method was applied to the determination of Cd(II), Ni(II), Co(II) and Cu(II) in black tea, tap and river water samples.  相似文献   

2.
A novel chemiluminescence (CL) flow system has been developed for the sequential determination of Fe(II) and Fe(III) in water. Fe(II) was detected by its catalytic effect on the CL reaction between luminol immobilized on an anion exchange resin column and dissolved oxygen; Fe(III) was determined by difference measurement after on-line conversion to Fe(II) in a reducing mini-column packed with Cu plated Zn granules. For both ions, the calibration graph was linear in the range 1 × 10–9 to 1 × 10–6 g/mL, and the detection limit was 4 × 10–10 g/mL. A complete analysis could be performed in 1.5 min with a relative standard deviation of less than 5%. The system could be reused for over 200 times and has been applied successfully to the determination of Fe(II) and Fe(III) in natural water samples.  相似文献   

3.
A new polychelatogen, AXAD-16-1,2-diphenylethanolamine, was developed by chemically modifying Amberlite XAD-16 with 1,2-diphenylethanolamine to produce an effective metal-chelating functionality for the preconcentration of Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) and their determination by flame atomic absorption spectrometry. Various physiochemical parameters that influence the quantitative preconcentration and recovery of metal were optimized by both static and dynamic techniques. The resin showed superior extraction efficiency with high-metal loading capacity values of 0.73, 0.80, 0.77, 0.87, 0.74, and 0.81 mmol/g for Mn(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II), respectively. The system also showed rapid metal-ion extraction and stripping, with complete saturation in the sorbent phase within 15 min for all the metal ions. The optimum condition for effective metal-ion extraction was found to be a neutral pH, which is a great advantage in the preconcentration of trace metal ions from natural water samples without any chemical pretreatment of the sample. The resin also demonstrated exclusive ion selectivity toward targeted metal ions by showing greater resistivity to various complexing species and more common metal ions during analyte concentration, which ultimately led to high preconcentration factors of 700 for Cu(II); 600 for Mn(II), Ni(II), and Zn(II); and 500 for Cd(II) and Pb(II), arising from a larger sample breakthrough volume. The lower limits of metal-ion detection were 7 ng/mL for Mn(II) and Ni(II); 5 ng/mL for Cu(II), Zn(II), and Cd(II), and 10 ng/mL for Pb(II). The developed resin was successful in preconcentrating metal ions from synthetic and real water samples, multivitamin-multimineral tablets, and curry leaves (Murraya koenigii) with relative standard deviations of < or = 3.0% for all analytical measurements, which demonstrated its practical utility.  相似文献   

4.
A novel and selective method for the fast determination of trace amounts of Cu(II) ions in water samples has been developed. The first organic-solution-processable functionalized-graphene (SPF-Graphene) hybrid material with porphyrins, porphyrin-graphene nanohybrid, 5-(4-aminophenyl)-10, 15, 20-triphenyl porphyrin and its photophysical properties including optical (TPP) and grapheme oxide molecules covalently bonded together via an amide bond (TPP-NHCO-SPFGraphene) were used as absorbent for extraction of Cu(II) ions by solid phase extraction method. The complexes were eluted with HNO3 (2 M) 10% (vol/vol) methanol in acetone and determined the analyte by flame atomic absorption spectrometry. The procedure is based on the selective formation of Cu(II) at optimum pH by elution with organic eluents and determination by flame atomic absorption spectrometry. The method is based on complex formation on the surface of the ENVI-18 DISK? disks modified porphyrin-graphene nanohybrid, 5-(4-aminophenyl)-10,15,20-triphenyl porphyrin (TPP) and grapheme oxide molecules covalently bonded together via an amide bond (TPP-NHCO-SPFGraphene) followed by stripping of the retained species by minimum amounts of appropriate organic solvents. The elution is efficient and quantitative. The effect of potential interfering ions, pH, TPP-NHCO-SPFGraphene, amount, stripping solvent, and sample flow rate were also investigated. Under the optimal experimental conditions, the break-through volume was found to about 1000 mL providing a preconcentration factor of 600. The maximum capacity of the disks was found to be 398 ± 3 μg for Cu2+. The limit of detection of the proposed method is 5 ng per 1000 mL. The method was applied to the extraction and recovery of copper in different water samples.  相似文献   

5.
This study reports the synthesis of water soluble iron(II) phthalocyanine and a facile method for spectrophotometric determination of Hg(II) in environmental water samples by ionic liquid based dispersive liquid–liquid microextraction (IL-DLLME). In the method, 1-heptyl-3-methylimidazolium hexafluorophosphate (250 µL) as extraction solvent, acetonitrile (750 µL) as dispersive solvent and Triton X-100 (200 µL) as anti-sticking agent were used. After the extraction of the Hg(II) complex (Hg(II):q-Fe(II)-Pc) into thin droplets of ionic liquid, the sample was centrifuged for 4 min at 2000 rpm. The upper aqueous phase was removed and the residue diluted to 250 µL with methanol and transferred to a 250 µL cell for spectrophotometric detection at 280 nm. The linear range of the method is 0.05–1 µg/mL. The limits of detection and quantification is 0.01 and 0.03 µg/mL, respectively. The RSD for the developed method was calculated as 0.78% at 0.50 µg/mL Hg(II).  相似文献   

6.
The determination of Pb(II) and Cd(II) in different sample matrices, including drinking water, distilled spirits and fruit wine, was carried out by flame atomic absorption spectrometry (FAAS) after pre-concentration using homogeneous liquid-liquid extraction (HLLE). First, the HLLE method was optimised with lead diethyldithiocarbamate (Pb-DDTC) complex which was extracted with a perfluorooctanoate anion (PFOA?) dissolved in lithium hydroxide under acidic conditions. The optimum extraction conditions, using 0.01 M DDTC, 0.05 M PFOA?, 3 M HCl and 1 mL of 30 vol. % acetone, were obtained. The Pb-DDTC complex in the nitric acid digest of the samples (50–150 mL) was extracted quantitatively into a drop of 100 μL of sediment phase. The sediment phase dissolved in 1 vol. % HNO3 with at least 3–5 mL of the final volume was then determined by FAAS, affording a pre-concentration factor of 10–50. Hence, the HLLE method afforded an increase in both sensitivity and selectivity for the metal determination by conventional FAAS, resulting in ultra-trace level detection of Pb(II) in all samples analysed (drinking water, 9.2–23 ng mL?1; distilled spirits, 23–50 ng mL?1; fruit wine, 24–53 ng mL?1). In addition, the proposed method could successfully be applied to Cd(II) determination in these samples.  相似文献   

7.
A new chelating resin, Xylenol Orange coated Amberlite XAD-7, was prepared and used for preconcentration of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) prior to their determination by flame atomic absorption spectrophotometry. The optimum pH values for quantitative sorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) are 4.5-5.0, 4.5, 4.0-5.0, 4.0, 5.0 and 5.0-7.0, respectively, and their desorptions by 2 mol L(-1) HCl are instantaneous. The sorption capacity of the resin has been found to be 2.0, 2.6, 1.6, 1.6, 2.6 and 1.8 mg g(-1) of resin for Cd, Co, Cu, Fe, Ni and Zn, respectively. The tolerance limits of electrolytes, NaCl, NaF, NaI, NaNO3, Na2SO4 and of cations, Mg2+ and Ca2+ in the sorption of the six metal ions are reported. The preconcentration factor was between 50 and 200. The t1/2 values for sorption are found to be 5.3, 2.9, 3.2, 3.3, 2.5 and 2.6 min for the six metals, respectively. The recoveries are between 96.0 and 100.0% for the different metals at preconcentration limits between 10 to 40 ng mL(-1). The preconcentration method has been applied to determine the six metal ions in river water samples after destroying the organic matter (if present in very large amount) with concentrated nitric acid (RSD < or = 8%, except for Cd for which it is upto 12.6%) and cobalt content of vitamin tablets with RSD of approximately 3.0%.  相似文献   

8.
A new chelating resin, Xylenol Orange coated Amberlite XAD-7, was prepared and used for preconcentration of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) prior to their determination by flame atomic absorption spectrophotometry. The optimum pH values for quantitative sorption of Cd(II), Co(II), Cu(II), Fe(III), Ni(II) and Zn(II) are 4.5–5.0, 4.5, 4.0–5.0, 4.0, 5.0 and 5.0–7.0, respectively, and their desorptions by 2 mol L–1 HCl are instantaneous. The sorption capacity of the resin has been found to be 2.0, 2.6, 1.6, 1.6, 2.6 and 1.8 mg g–1 of resin for Cd, Co, Cu, Fe, Ni and Zn, respectively. The tolerance limits of electrolytes, NaCl, NaF, NaI, NaNO3, Na2SO4 and of cations, Mg2+ and Ca2+ in the sorption of the six metal ions are reported. The preconcentration factor was between 50 and 200. The t1/2 values for sorption are found to be 5.3, 2.9, 3.2, 3.3, 2.5 and 2.6 min for the six metals, respectively. The recoveries are between 96.0 and 100.0% for the different metals at preconcentration limits between 10 to 40 ng mL–1. The preconcentration method has been applied to determine the six metal ions in river water samples after destroying the organic matter (if present in very large amount) with concentrated nitric acid (RSD ≤ 8%, except for Cd for which it is upto 12.6%) and cobalt content of vitamin tablets with RSD of ~ 3.0%.  相似文献   

9.
A highly sensitive and selective chromogenic reagent 2,4-bis(4-phenylazophenylaminodiazo)phenol (BPPAAP) reacted with copper(II) to form a highly stable complex in the ethanolic solution at pH range of 9.0–12.0. The Cu(II)-BPPAAP complex showed maximum absorbance at 540 nm, with molar absorptivity being 1.86 × 105 L/mol cm. Beer’s law was obeyed over the range 0–0.2 μg/100 mL of copper(II) and variation coefficient is found to be 2.4–4.8%. The detection and quantification limit of the method are 2.0 and 6.5 ng/mL, respectively. To eliminate the interference of foreign ions, a convenient and efficient method using a column packed with sulfhydryl dextrose gel as a solid-phase extractant was utilized with satifactory reults. The developed method has been successfully employed for the determination of copper(II) in the biological samples.  相似文献   

10.
In this work, a new method has been proposed to simultaneously determine V(V), Co(II) and Cu(II) ions from aqueous solution by spectrophotometry after cloud point extraction using partial least squares regression (PLS). The metal ions in 10 ml of aqueous solution (containing 0.2 M sodium acetate buffer solution, pH 3.5) were formed complexes with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP). Then, Triton X-114 (2 %, v/v) was added to the solution. By increasing the temperature of the solution up to 55 °C, a phase separation occurred. After centrifugation at 3,000 rpm for 10 min, the surfactant-rich phase was dissolved and diluted to 0.5 mL with ethanol. The metal ions were then determined using spectrophotometry. At these optimal extraction and operating conditions, linearity was obeyed in the range 7–300, 3–100 and 15–700 ng mL?1 of V(V), Co(II) and Cu(II), with the detection limit of 2.2, 1.0 and 4.5 ng mL?1, respectively. The relative predictive error for the simultaneous determination of 15 test samples of different concentrations of V(V), Co(II) and Cu(II) was 3.28, 3.64 and 4.04 %, respectively. The root mean square error of prediction for applying the PLS method to 15 synthetic samples in the linear ranges of these metal ions was 3.4, 1.6 and 18.1 ng mL?1. The interference effect of some anions and cations was also tested. The proposed method has been applied successfully to the simultaneous determination of V(V), Co(II) and Cu(II) ions in real matrix samples with the recoveries of 96.75–104.80 %.  相似文献   

11.
《Analytical letters》2012,45(6):1209-1226
Abstract

A sensitive method for the simultaneous spectrophotometric determination of Fe(II), Cu(II), Zn(II), and Mn(II) in mixtures has been developed with the aid of multivariate calibration methods, such as classical least squares (CLS), principal component regression (PCR) and partial least squares (PLS). The method is based on the spectral differences of the analytes in their complexation reaction with 4‐(2‐pyridylazo)‐resorcinol (PAR) and the use of full spectra with wavelengths in the range of 300–600 nm. It was found that both the spectral positive and negative bands obtained against the PAR blank, are proportional to the concentration for each metal complex. The obtained linear calibration concentration ranges are 0.025–0.6, 0.05–0.8, 0.025–0.8, and 0.05–0.8 µg ml?1 for Fe(II), Cu(II), Zn(II), and Mn(II), respectively, and the LODs for the four metal ions were found to be approximately 1–3×10?2 µg ml?1. The proposed method was applied to a verification set of synthetic mixtures of these four metal ions, with models built in three different wavelength ranges, i.e., 300–450, 450–600, and 300–600 nm, corresponding to the positive, negative bands and their combinations, respectively. It was shown that the PLS model for the 300–600 nm range gave the best results (RPET=6.9% and average recovery ~100%; cf. PCR: RPET=9.5% and average Recovery ~110%). This method was also successfully applied for the determination of the four metal ions in pharmaceutical preparations, chicken feedstuff, and water samples.  相似文献   

12.
Khuhawar MY  Soomro AI 《Talanta》1992,39(6):609-612
The reagent bis(acetylpivalylmethane)ethylenediimine has been examined for the HPLC separation of copper(II), nickel(II), palladium(II) and oxovanadium(IV) chelates on reversed phase HPLC columns (250 x 4 mm) packed with Hypersil ODS, 5 mu and (150 x 3.9 mm) Nova Pak C(18) with guard column. The complexes are eluted with a binary mixture of methanol and water or methanol, acetonitrile and water. Detection is achieved with a UV detector. The solvent extraction procedure is used for the determination of copper and nickel simultaneously at microgram levels, corresponding to ng levels and pg levels respectively, per injection. The method has been applied to the determination of copper and nickel in a coin, nickel-aluminum alloy and water samples.  相似文献   

13.
We have covalently grafted phenyl-iminodiacetic acid groups onto multi-walled carbon nanotubes via a diazotation reaction. The resulting material was characterized by FT-IR and UV–vis spectroscopy, by TGA, XPS and SEM. It is shown to be a valuable solid-phase extraction adsorbent for the preconcentration of trace quantities of Fe(III), Cu(II) and Pb(II) ion from aqueous solution prior to their determination by ICP-OES. Various factors affectting the separation and preconcentration were investigated. The enrichment factor typically is 100. Under optimized experimental conditions, the maximum adsorption capacities for Fe(III), Cu(II) and Pb (II) are 64.5, 30.5 and 17.0?mg?g-1, respectively, the detection limits are 0.26, 0.15 and 0.18?ng?mL-1, and the relative standard deviations are <2.5% (n?=?6). The new adsorbent shows superior reusability and stability. The procedure was successfully applied to the determination of trace quantities of Fe(III), Cu(II) and Pb (II) in water samples.
Figure
Multiwalled carbon nanotubes grafted with phenyl-iminodiacetic acid (PIDA-MWCNTs) is prepared and employed as solid phase extraction sorbent to determinate the trace Fe(III), Cu(II) and Pb (II) in water samples. The method has been applied to the preconcentration of trace amount of Fe(III), Cu(II) and Pb (II) in water samples with satisfactory results.  相似文献   

14.
A novel chemiluminescence (CL) flow system has been developed for the sequential determination of Fe(II) and Fe(III) in water. Fe(II) was detected by its catalytic effect on the CL reaction between luminol immobilized on an anion exchange resin column and dissolved oxygen; Fe(III) was determined by difference measurement after on-line conversion to Fe(II) in a reducing mini-column packed with Cu plated Zn granules. For both ions, the calibration graph was linear in the range 1 × 10–9 to 1 × 10–6 g/mL, and the detection limit was 4 × 10–10 g/mL. A complete analysis could be performed in 1.5 min with a relative standard deviation of less than 5%. The system could be reused for over 200 times and has been applied successfully to the determination of Fe(II) and Fe(III) in natural water samples. Received: 13 March 1997 / Revised: 3 June 1997 / Accepted: 6 June 1997  相似文献   

15.
Silica gel was firstly functionalized with aminopropyltrimethoxysilane obtaining the aminopropylsilica gel (APSG). The APSG was reacted subsequently with curcumin yielding curcumin-bonded silica gel (curcumin-APSG). This new bonded silica gel was used for separation, pre-concentration and determination of Cu(II), Fe(III), Zn(II) in biological and natural water samples by inductively coupled plasma optical emission spectrometry (ICP-OES). Experimental conditions for effective adsorption of trace levels of metal ions were optimized with respect to different experimental parameters using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the newly sorbent was 4.0. Complete elution of the adsorbed metal ions from the sorbent surface was carried out using 2.0 mL of 0.1 mol L− 1 of HCl. Common coexisting ions did not interfere with the separation and determination at pH 4.0. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 0.63, 0.46 and 0.37 mmol g− 1 for Cu(II), Fe(III) and Zn(II) respectively. The time for 95% sorption for Cu(II) Fe(III) and Zn(II) was less than 2 min. The detection limits of the method defined by IUPAC was found to be 0.12, 0.15 and 0.40 ng mL− 1 for Cu(II), Fe(III) and Zn(II), respectively. The relative standard deviation (RSD) of the method under optimum conditions was lower 3.0% (n = 5). The procedure was validated by analyzing the certified reference river sediment material (GBW 08301, China), the results obtained were in good agreement with standard values. This sorbent was successfully employed in the separation and pre-concentration of trace Cu(II), Fe(III) and Zn(II) from the biological and natural water samples yielding 75-fold concentration factor.  相似文献   

16.
An analytical procedure has been developed for the separation of Cu(II), Ni(II), Co(II), Fe(II), Pd(II), Th(IV), V(IV), and determination of Fe(II), Co(II), Ni(II), and V(IV) by MEKC after chelation with bis(salicylaldehyde)tetramethylethylenediimine (H2SA2Ten). Uncoated fused silica capillary was used with an applied voltage of 30 kV with photo‐diode array detection at 228 nm. SDS was added as micellar medium at pH 8.2 with sodium tetraborate buffer (0.1 M). Linear calibrations were established within 0.015–1000 μg/mL of each element with LOD within 5–67 ng/mL. The method was applied for the determination of vanadium from crude oil and ore samples in the range 0.34–2.40 and 114.2–720.7 μg/g with RSD 1.7–3.8 and 0.98–2.30% (n = 3), respectively. Fe, Ni, and Co present in crude oil and ore samples were also determined with RSD 1.3–2.8, 1.1–4.1, and 1.2–3.5% (n = 3), respectively. The results were compared with that of supplier's specifications and atomic absorption spectrometry (AAS). Method was evaluated by standard addition technique.  相似文献   

17.
Cloud point extraction (CPE) was applied as a preconcentration step prior to graphite furnace atomic absorption spectrometry (GFAAS) determination of manganese(II) and iron(III) in water samples. After complexation with 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone (PMBP), the analytes could be quantitatively extracted to the phase rich in the surfactant p-octylpolyethyleneglycolphenylether (Triton X-100) and be concentrated, then determined by GFAAS. The parameters affecting the extraction efficiency, such as solution pH, concentration of PMBP and Triton X-100, equilibration temperature and time, were investigated in detail. Under the optimum conditions, preconcentration of 10 ml of sample solution permitted the detection of 0.02 ng ml(-1) of Mn(II) and 0.08 ng ml(-1) of Fe(III) with enrichment factors of 31 and 25 for Mn(II) and Fe(III), respectively. The proposed method was applied to determination of trace manganese(II) and iron(III) in water samples with satisfactory results.  相似文献   

18.
《Analytical letters》2012,45(1):153-166
Abstract

The use of 1,5-bis(di-2-pyridylmethylene) thiocarbono-hydrazide as a reagent for the extraction of Ni(II), Co(II), Zn(II), Fe(II), Cd(II) and Cu(II) into methyl isobutyl ketone has been studied, and a method for the determination of nickel at ultra-trace (ng/ml) level has been developed, by using electrothermal-atomization (graphite furnace) atomic absorption spectrometry involving a prior extraction with the cited extracting reagent. The chief advantage of the proposed method lies in its maximum allowed aqueous-to-organic phase volume ratio of 15. It has been successfully applied to the determination of nickel substrates in various biological samples.  相似文献   

19.
A new extraction flotation spectrum method for indirect determination of trace amounts of sulfide by ammonium sulfate‐ethanol‐water system was developed. It showed that Cu(II) could combine with S2? into precipitate (CuS) which was floated in the surface of ethanol and water in the presence of ammonium sulfate. The sulfide can be indirectly determined by determining the flotation yield of Cu(II). The linear range from 2.4 × 10?8to 3.2 × 10?6g/mL and the detect limit of 2.0 × 10?8g/mL was achieved. The results showed the determination of S2? was not affected by Pb(II), Zn(II), Cd(II), Fe(II), Co(II),Ni(II), Mn(II) and Cl?, Br?, I?, etc. In the paper, the method was successfully applied to the determination of a trace amount of sulfide in polluted water samples with the advantages of simplicity of equipment, rapidity, low cost, etc.  相似文献   

20.
Silica gel chemically bonded with aminothioamidoanthraquinone was synthesized and characterized. The metal sorption properties of modified silica were studied towards Pb(II), Cu(II), Ni(II), Co(II) and Cd(II). The determination of metal ions was carried out on FAAS. For batch method, the optimum pH ranges for Pb(II), Cu(II) and Cd(II) extraction were ≥3 but for Ni(II) and Co(II) extraction were ≥4. The contact times to reach the equilibrium were less than 10 min. The adsorption isotherm fitted the Langmuir's model showed the maximum sorption capacities of 0.56, 0.30, 0.15, 0.12 and 0.067 mmol/g for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively. In the flow system, a column packed modified silica at 20 mg for Pb(II) and Cu(II), 50 mg for Cd(II), 60 mg for Co(II), Ni(II) was studied at a flow rate of 4 and 2.5 mL/min for Ni(II). The sorbed metals were quantitatively eluted by 1% HNO3. No interference from Na+, K+, Mg2+, Ca2+, Cl and SO42− at 10, 100 and 1000 mg/L was observed. The application of this modified silica gel to preconcentration of pond water, tap water and drinking water gave high accuracy and precision (%R.S.D. ≤ 9). The method detection limits were 22.5, 1.0, 2.9, 0.95, 1.1 μg/L for Pb(II), Cu(II), Ni(II), Co(II) and Cd(II), respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号