首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Complex experimental and theoretical investigations of the magnetic, magnetoelectric, and magnetoelastic properties of neodymium iron borate NdFe3(BO3)4 along various crystallographic directions have been carried out in strong pulsed magnetic fields up to 230 kOe in a temperature range of 4.2–50 K. It has been found that neodymium iron borate, as well as gadolinium iron borate, is a multiferroic. It has a much larger (above 300 μC/m2) electric polarization controlled by the magnetic field and giant quadratic magnetoelectric effect. The exchange field between the rare-earth and iron subsystems (~50 kOe) has been determined for the first time from experimental data. The theoretical analysis based on the magnetic symmetry and quantum properties of the Nd ion in the crystal provides an explanation of the unusual behavior of the magnetoelectric and magnetoelastic properties of neodymium iron borate in strong magnetic fields and correlation observed between them.  相似文献   

2.
Multiferroic properties in a polycrystalline terbium orthoferrite are investigated. Different thermomagnetic behaviors are observed in different magnetic fields, which is attributed to the suppression of the low temperature magnetic phase by an external magnetic field. Further studies reveal that the ferroelectricity originates from the spin configuration below3.5 K. In addition, the magnetic field control of electric polarization and dielectric constant is observed, which suggests a magnetoelectric effect in TbFeO3. The origin of ferroelectricity in this rare-earth orthoferrite is discussed.  相似文献   

3.
A series of trivalent rare-earth element ions (europium, terbium, dysprosium) singly- and co-doped strontium yttrium borate phosphors was synthesized via the sol–gel method. The phase formation, luminescence properties, decay times, and energy transfer behaviors from terbium ions to europium ions, the thermal stability, and the Commission Internationale de L’Eclairage coordinates were investigated. Under the excitation of ultraviolet light, the singly doped phosphors exhibited green emission of terbium ions, white emission of dysprosium ions, and red emission of europium ions, respectively. For the terbium and europium ions co-doped strontium yttrium borate samples, a white emission can be realized by blending the doping concentration of terbium and europium ions. The critical distance between terbium and europium ions has been calculated to be about 14.52?Å and the energy transfer from terbium to europium occurred through the dipole–quadrupole interaction. At 150°C, the emission intensity of terbium and europium in the 12?mol% terbium and 14?mol% europium co-doped strontium yttrium borate sample was maintained at about 74% and 87% of their corresponding initial values, respectively, and the dysprosium ions singly doped strontium yttrium borate sample showed about 70% of its initial emission intensity at room temperature. The above results suggested that europium, terbium, dysprosium ions singly- and co-doped strontium yttrium borate phosphors have potential applications as ultraviolet-convertible phosphors.  相似文献   

4.
The anisotropic magnetoelectric properties of an ytterbium aluminum borate YbAl (BO single crystal having noncentrosymmetric crystal structure (space group R32) are studied, including the orientational, field, and temperature dependences of the polarization in magnetic fields up to 5 T in the temperature range of 2–300 K. It has been shown experimentally for the first time that the symmetry of the observed magnetoelectric effects exactly corresponds to the trigonal structure of the crystal and is characterized by two quadratic magnetoelectric constants. The polarization in the basal plane P a, b is a quadratic function of the field at low fields and reaches 250–300 μC/m2 in a field of 5 T at a temperature of 2 K, almost an order of magnitude exceeding the previously reported values. A theoretical model based on the spin Hamiltonian of the ground Kramers doublet of Yb3+ ions in the crystal field is proposed including magnetoelectric interactions allowed by the symmetry. This model makes it possible to quantitatively describe all observed magnetic and magnetoelectric properties of YbAl3(BO3)4.  相似文献   

5.
Complex studies of the magnetic, magnetoelectric, and magnetoelastic properties of GdMn2O5 single crystals in strong pulsed magnetic fields are carried out in order to obtain additional indirect information on the character of the rare-earth and manganese spin ordering. It is shown that magnetic ordering of Gd3+ spins affects the manganese sublattice spin orientation and initiates new magnetic phase transitions. The observed magnetoelectric properties of the GdMn2O5 system are interpreted in terms of the theory of phase transitions.  相似文献   

6.
The electric polarization induced in ferroelectric terbium molybdate by a magnetic field linearly varying with time is measured. The measurements are performed in fields up to 19 T at different specified rates of change in the magnetic field at temperatures of 273 and 219 K. The results obtained indicate that there are magnetoelectric effects of two types. One of them is a conventional magnetoelectric effect, which is appropriately referred to as the static magnetoelectric effect. The other effect is characterized by the fact that the electric polarization increases with an increase in the rate of change in the magnetic field and relaxes with time to zero at a fixed nonzero field. This phenomenon is termed the dynamic magnetoelectric effect.  相似文献   

7.
Anisotropy of the nonlinear magnetoelectric effect in a single-crystal, single-domain sample of the β′ metastable ferroelectric paramagnetic phase of terbium molybdate Tb2(MoO4)3 was studied experimentally in dc magnetic fields of up to 6 T at temperatures of 4.2 and 1.8 K. It was shown that the existing models of the magnetoelectric effect cannot explain the experimental dependences of magnetic field-induced electric polarization on the direction of the applied magnetic field. A model of the magnetoelectric effect is proposed that qualitatively describes the observed angular dependence of the magnetic field-induced electric polarization.  相似文献   

8.
A comprehensive experimental and theoretical study of magnetic, magnetoelectric, thermal, and spectroscopic characteristics of HoGa3(BO3)4 gallium borate single crystals has been performed. A large magnetoelectric effect exceeding its values found in all iron and aluminum borates except HoAl3(BO3)4 has been observed. The magnetoelectric polarization of HoGa3(BO3)4 equals ΔP ba (B a ) ≈ ?1020 μC/m2 at T = 5 K in a magnetic field of 9 T. The theoretical treatment based on the crystal field model for rare-earth ions provides a unified approach for the consistent interpretation of all measured characteristics. The crystal-field parameters are determined. The temperature (in the 3–300 K range) and magnetic field (up to 9 T) dependences of the magnetization, the Schottky anomaly in the temperature dependence of the specific heat, and its shift in the field B ‖ c are described. To compare the thermal properties of HoGa3(BO3)4 with those of HoAl3(BO3)4 exhibiting record values of the polarization, the specific heat of HoAl3(BO3)4 at various B values and the temperature dependence of the polarization ΔP b (T) in the applied magnetic field of 9 T have been measured.  相似文献   

9.
The magnetic, magnetoelectric, and magnetoelastic properties of RFe3(BO3)4 ferroborates are studied. The measurement of the field dependences of the magnetoelectric polarization along the a axis in holmium ferroborate and in the mixed composition Ho0.5Sm0.5Fe3(BO3)4 revealed the following dependences for easy-plane ferroborates: (a) the longitudinal and transverse magnetoelectric effects have the opposite signs and (b) magnetically induced polarization changes its sign in a field close to the field of exchange between rare-earth and iron ions. These dependences agree well with theoretical predictions based on the symmetry of the compounds. The relatively low f-d exchange field in holmium ferroborate (about 20 kOe), which magnetizes the rare-earth subsystem, causes smaller polarization jumps (about 30 ??C/m2) in fields lower than 10 kOe as compared to the jumps in other easy-plane ferroborates (R = Sm, Nd). The increase in the electric polarization induced in HoFe3(BO3)4 in magnetic fields higher than 100 kOe (200?C300 ??C/m2) is found to be significantly smaller than in neodymium ferroborate, which indicates a substantial dependence of the magnetoelectric effects on the electronic structure of a rare-earth ion.  相似文献   

10.
Solid solutions of Bi1-x Re x FeO3 (Re=La, Nd; x=0-0.2) compounds were synthesized, and their room-temperature magnetoelectric and magnetodielectric properties were studied. Amplification of magnetoelectric and magnetodielectric effects with increasing the rare-earth doping level was detected in the concentration range x under study. The results obtained confirm the prospects for applications of bismuth ferrite-based compounds as magnetoelectric converters and magnetic field sensors.  相似文献   

11.
In the present paper, the magnetic properties of Tb1–xSmx alloys with different samarium contents are investigated along the <11 [`2]\overline 2 0 > (b), < 10 [`1]\overline 1 0 \gt; (a), and <0001> (c) crystallographic directions in magnetic fields up to 50 kOe in the temperature interval 4.2–400 K. It is demonstrated that small additions of the light rare-earth samarium metal to the heavy rare-earth terbium metal increase the specific magnetization and the effective magnetic moments.  相似文献   

12.
13.
It is pointed out that the changes in structural and magnetic properties of small gadolinium, terbium and holmium particles reported by P.E. Chizhov, A.N. Kostigov & V. Petinov, Solid State Commun.42, 323 (1982) may be due to contaminants (hydrogen and oxygen) in their samples and not to size-dependent new phases of the rare-earth metals.  相似文献   

14.
Results of a complex investigation of the magnetic, magnetoelectric, and magnetoelastic properties of a SmFe3(BO3)4 single crystal are presented. Samarium iron borate is similar to another easy-plane iron borate, NdFe3(BO3)4, in that it possesses a large value of the magnetic-field-induced polarization (about 500 μC/m2), the sign of which changes when the field direction is changed between axes a and b of the crystal. However, the temperature dependence of the magnetic susceptibility and the field dependence of polarization and magnetostriction of the two compounds are significantly different, which is explained by the weak effect of external magnetic field on the ground-state multiplet of samarium ion, which is characterized by an extremely small value of its g-factor.  相似文献   

15.
Amorphous TbFe films are fabricated by dc magnetron sputtering, and their magnetostrictions at low field are examined over a wide range of terbium content (from 32at.% to 70at.%). It is found that the terbium content plays an important role in the magnetic and magnetostrictive properties of TbFe films. TbFe film soft magnetic properties and low field magnetostriction can be efficiently improved by controlling the terbium at an optimum content. The magnetostriction at lower magnetic field is increased with the increase of terbium content up to 48.2at.%. After reaching the maximum value, further increase of terbium content would result in a great decrease of the low field magnetostriction. By contrast, at higher magnetic field, the magnetostriction is decreased monotonically with the increase of the terbium content.  相似文献   

16.
17.
Magnetoelectric interactions have been investigated in a single crystal of gadolinium iron borate GdFe3(BO3)4, whose macroscopic symmetry is characterized by the crystal class 32. Using the results of this study, the interplay of magnetic and electric orderings occurring in the system has been experimentally revealed and theoretically substantiated. The electric polarization and magnetostriction of this material that arise in spin-reorientation transitions induced by a magnetic field have been investigated experimentally. For Hc and Hc, H-T phase diagrams have been constructed, and a strict correlation between the changes in the magnetoelectric and magnetoelastic properties in the observed phase transitions has been ascertained. A mechanism of specific noncollinear antiferroelectric ordering at the structural phase transition point was proposed to interpret the magnetoelectric behavior of the system within the framework of the symmetry approach in the entire temperature range. This ordering provides the conservation of the crystal class of the system when the temperature decreases to the antiferroelectric ordering point. The expressions that have been obtained for the magnetoelectric and magnetoelastic energy describe reasonably well the behavior of gadolinium iron borate observed experimentally.  相似文献   

18.
Symmetry analysis of magnetoelectric interactions in rare-earth orthoferrites and orthochromites has been performed. It has been shown that symmetry allows the appearance of spontaneous electric polarization or the magnetic-field-induced polarization in the region of antiferromagnetic (centro-asymmetric) ordering of the rare-earth ions. The analysis reveals a number of pronounced anomalies in the behavior of the electric polarization at the metamagnetic and spin-reorientation transitions in DyCrO3 and TbFeO3. This behavior points to a strong sensitivity of the magnetoelectric properties of such magnets to the antiferromagnetic state of the rareearth subsystem and the spin orientation of the d ions.  相似文献   

19.
Complex magnetic, magnetoelectric and magnetoelastic studies of spontaneous and field-induced phase transitions in TmMn2O5 were carried out. In the vicinity of spontaneous phase transition temperatures (35 and 25 K) the magnetoelectric and magnetoelastic dependences demonstrated the jumps of polarization and magnetostriction induced by the field ∼150 kOe. These anomalies can be attributed to the influence of magnetic field on the conditions of incommensurate-commensurate phase transition at 35 K and the reverse one at 25 K. In b-axis dependences the magnetic field-induced spin-reorientation phase transition was also observed below 20 K. Finally the magnetoelectric anomaly associated with metamagnetic transition is observed below the temperature of rare-earth subsystem ordering at relatively small critical fields of 5 kOe. This variety of spontaneous and induced phase transitions in RMn2O5 stems from the interplay of three magnetic subsystems: Mn3+, Mn4+, R3+. The comparison with YMn2O5 highlights the role of rare earth in low-temperature region (metamagnetic and spin-reorientation phase transitions), while the phase transition at higher temperatures between incommensurate and commensurate phases should be ascribed to the different temperature dependences of Mn3+ and Mn4+ ions. The strong correlation of magnetoelastic and magnetoelectric properties observed in the whole class of RMn2O5 highlights their multiferroic nature.  相似文献   

20.
Mean-field theory based on Heisenberg model is used to investigate the magnetic and magnetoelectric properties at a finite temperature in the A-type antiferromagnetic lattice, in which we consider that an applied electric field can generate a bulk magnetic moment. We have calculated the magnetic moment, magnetic susceptibility and magnetoelectric susceptibility as a function of temperature for A-type antiferromagnetic system. It is demonstrated that an applied electric field together with the coupling parameter has an effect on the magnetic ordering behavior. Our results are almost consistent with those of spin-wave theory within the range of low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号