首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
在氮气氛下,以紫外光辐照VCl_2(C_2H_5OH)_4,VCl_3(C_2H_5OH)_4络合物的乙醇溶液和VCl_2(H_20)_4,VCl_3(H_20)_4的水溶液,可使N_2还原成N_2H_4和NH_3,同时溶剂质子还原放氢。两个还原反应是竞争电子的。放氢反应是催化反应,可能经过一个含氢的中间络合物。氮的还原可能经过一个双核钒的双氮基络合物。  相似文献   

2.
进行了VCl_2(PPh_3)_2甲醇溶液光还原氮和放氢反应动力学的研究,提出了肼是氮还原为氨的中间物的动力学证据。说明Ⅴ(Ⅱ)络合物是活性物种。氮分子的光还原氢化反应的可能机理是:以形成线形桥式双核钒(Ⅱ)的双氮基络合物活化,受氢原子攻击,形成配位的二亚胺和游离的肼,肼再还原质子化变成氨。  相似文献   

3.
许多过渡金属双氮基络合物已经合成并分离出来,其中一些配位的双氮基可以被还原质子化转变成肼或氨。不过,这一过程迄今都还是化学计量反应。欲使这一反应达到催化循环,必须消耗过量的还原剂,或外加其他能量(如电能),以求达到提供电子和维持过渡金属  相似文献   

4.
单原子催化剂(SAC)由于其低成本和在各种电催化反应中潜在的高催化活性而被认为是铂族金属的有前景的替代材料,但仍然缺乏对不同金属氮碳材料催化剂之间活性差异的原子机理的理解.在此,通过实验和理论研究相结合,研究了非贵金属氮碳材料(Me-N-C,Me = Fe和Co)作为模型催化剂,以探索在普遍的pH值下氧还原反应(ORR...  相似文献   

5.
以NaH粉和Al 粉为合成原料, 分别采用2% (摩尔分数, x) CeCl3和2% CeCl3/y% KH (y=0.02, 0.04)为催化添加剂, 在室温和3 MPa氢压下, 通过反应球磨(NaH/Al+CeCl3)和(NaH/Al+CeCl3/yKH) (y=0.02, 0.04)复合物成功制备出Na-Al-H 配位氢化物. 吸放氢性能测试结果表明, KH的加入能有效改善Na-Al-H 体系中第二步脱氢反应放氢动力学性能. (NaH/Al+CeCl3/0.02KH)复合物170℃放氢时可在20 min内完成脱氢过程, 且在较低温度(100-140℃)下具有良好的可逆吸放氢性能. Kissenger 方法计算表明, 添加KH可降低Na-Al-H 体系第二步脱氢反应的表观活化能, 降低其放氢峰值温度. 相结构分析表明, KH的添加使Na-Al-H 体系中Na3AlH6的晶胞体积发生膨胀, 进而提高体系的第二步放氢动力学性能.  相似文献   

6.
《电化学》2021,(2)
单原子催化剂(SAC)由于其低成本和在各种电催化反应中潜在的高催化活性而被认为是铂族金属的有前景的替代材料,但仍然缺乏对不同金属氮碳材料催化剂之间活性差异的原子机理的理解。在此,通过实验和理论研究相结合,研究了非贵金属氮碳材料(Me-N-C,Me=Fe和Co)作为模型催化剂,以探索在普遍的p H值下氧还原反应(ORR)和氢析出反应(HER)的催化活性以及相对应的反应机理。原子理论模拟表明,Fe-N-C具有比Co-N-C高的ORR活性,这是因为其速率决定步骤的反应势垒较低,而HER的活性趋势却相反。我们的模拟结果与实验观察结果一致。  相似文献   

7.
TiO2粉末上氮的光催化还原反应和TiO2粉末晶型的影响   总被引:5,自引:0,他引:5  
  相似文献   

8.
本工作用两种方法合成了高分子配位体,其一为以单体配位体苯乙烯基二苯膦(SDPP)均聚及共聚;其二是从交联聚苯乙烯微球出发的传统方法。将所合成的各种高分子膦配位体与镍的络合物用于催化丁二烯环寡聚反应。结果表明,由单体配位体所得到的高分子配位体在选择性上比均相反应略高,转化率基本相同,但反应速度则低一个数量级,而用传统方法得到的高分子金属络合催化剂,其反应速度比均相反应低两个数量级,转化率仅为均相反应的四分之一,产物组成上也有明显不同。  相似文献   

9.
用粘度法和光散射法研究了分别具有质子给体 (Protondonor)和质子受体 (Protonacceptor)官能团的丙烯酸酯共聚物在溶液中的相互作用 .从粘度增长因子和聚合物在溶液中理想增比粘度的关系基础上提出了一个新的相互作用参数ka,研究了质子给体聚合物和质子受体聚合物在甲苯中的特殊相互作用 ,讨论了丙烯酸酯含量和酯烷基长度对组分间相互作用的影响 .结果表明 ,组分间的特殊相互作用随着丙烯酸长碳链酯含量和酯烷基长度的增加而增强 .光散射的结果表明ka 能够用于表征共混体系中的特殊相互作用  相似文献   

10.
工业规模的化石能源消耗导致大气中二氧化碳含量不断增加,CO2转化利用成为人们日益关注的热点问题. 金属铜因其成本低廉、储量丰富,并且具有独特的CO2亲和力能够生成多碳化合物,是目前CO2电还原中研究最为广泛深入的电极材料. 由于阴、阳离子的特征吸附对Cu电极性能有显著影响,并且不同反应体系中对Cu电极上CO2吸附、活化影响也有所不同,因此导致金属Cu电极上报道的电催化活性、产物种类与选择性等都非常宽泛. 基于此,有必要系统地研究各种反应条件对金属Cu电极电催化CO2还原性能的影响. 作者选择了平均粒径为600 nm的商品化金属Cu颗粒作为电还原CO2的催化剂,研究了不同反应条件包括各种常用电解质溶液、KHCO3的浓度以及H型电解池和流动池. 实验结果表明,浓度为0.5 mol·L -1的KHCO3作为电解质溶液具有较好催化活性和较高的产物分电流密度,流动池可以进一步提高主要产物甲酸盐和CO的分电流密度. 本研究工作从反应条件的角度对CO2还原的电催化转化进行了系统研究,有助于理解电解液和反应器等因素对CO2电还原反应过程的影响规律.  相似文献   

11.
利用溶胶-凝胶法合成纳米NiCo2O4,并利用X射线衍射和透射电镜分析其结构和表面形貌. 结果表明NiCo2O4具有尖晶石结构, 平均粒径约为15 nm. 利用电势线性扫描和恒电势法测定了其对H2O2在碱性溶液中电化学还原反应的催化性能. 发现NiCo2O4对H2O2电化学还原具有高的催化活性和稳定性, 在H2O2浓度低于0.6 mol·L-1时, 其电化学还原反应主要通过直接还原途径进行. 以NiCo2O4为阴极催化剂的Al-H2O2半燃料电池在室温下的开路电压达1.6 V; 在1.0 mol·L-1 H2O2溶液中, 峰值功率密度达209 mW·cm-2, 此时电流密度为220 mA·cm-2.  相似文献   

12.
设计了一种新型双室隔膜电解池,可以在碳酸丙烯酯(PC)/四丁基高氯酸铵(TBAP)电解液中,将CO_2电还原为CO.由于CO_2电还原反应本身有H_2O生成,深入探究了H_2O对有机电解液电化学性能和电极反应过程的影响作用及相关机理.结果表明,当PC/TBAP中含有H_2O时,电解液电导率增大,黏度降低,CO_2溶解性增强.由于碳酸丙烯酯具有疏水性,当含H_2O量超过6.8%时,H_2O从PC/TBAP中分层析出,电解液的性质不会因水的积累而发生改变.反应过程中,H_2O对反应中间体(CO_2~(·-)自由基)具有稳定作用,使得过电位降低、电流密度升高.在PC/TBAP/6.8%H_2O中电还原CO_2时,生成CO的最高电流效率达到89%,电流密度达到9.18 mA/cm~2,电极不中毒,电化学反应可以稳定进行.  相似文献   

13.
陈子康 《大学化学》1988,3(3):27-31
本文论述了溶剂化效应的定义、本质,列举了两种重要的溶剂化模式,讨论了由于有机物分子的溶剂化效应导致对酸碱平衡、互变异构平衡的影响,以及溶剂化效应对烯烃加成,卤烃消除等立体化学过程的影响。  相似文献   

14.
刘京  宋平  阮明波  徐维林 《催化学报》2016,(7):1119-1126
目前,开发高效的阴极氧还原反应(ORR)电催化剂是实现燃料电池和金属-空气电池商业化发展急需完成的目标。在过去的几十年中,人们在探索廉价高效的 ORR电催化剂(如 N掺杂的非金属及非铂电催化剂)领域做了广泛的研究。在 N掺杂的碳基 ORR催化剂中,已知的 N基活性位点主要分为四类,即吡啶类氮(P-N)、吡咯类氮(Py-N)、石墨化氮(G-N)和氧化类氮(O-N)。尽管人们对这四种类型氮的活性位点做了大量的研究,但是它们在催化反应中起到的 ORR催化作用以及催化机理和活性位点本身结构的关系仍不够明确。早期的研究中有人认为 P-N或者 Py-N是 ORR催化活性位点,也有人认为是 G-N起作用。最近也有研究表明, P-N和 G-N都是 ORR催化活性位点,只是在 ORR中所起的催化能力不同。因此,很有必要认清这些问题。
  本文通过 Hummer法酸性氧化一次和两次碳黑 Vulcan XC-72(VXC-72)以及随后高温热处理,制备了一系列 ORR催化剂 VXCO-1, VXCO-2, VXCO-1(900)和 VXCO-2(900),采用场发射扫描电子显微镜(SEM), N2吸附脱附法,元素分析仪(EA), X射线光电子能谱(XPS),拉曼光谱仪(Raman), X射线衍射能谱(XRD),电化学循环伏安法和线性伏安法测试等手段研究 Hummers法酸氧化和高温热处理对 VXC-72形貌组成的影响,以及这些碳基中成分和其催化 ORR能力的关系。
   SEM结果表明, Hummer法酸性氧化处理 VXC-72一次和两次后可以逐层剥落其最外边的碳层结构,最终得到表面光滑的类片层状结构的碳材料(VXCO-1和 VXCO-2)。这种表面光滑的类片层状结构的碳材料比表面积大于处理前的 VXC-72,而高温热处理之后的碳材料(VXCO-1(900)和 VXCO-2(900))由于类石墨层碎片结构蒸发损失暴露出更多内部的微孔和介孔结构使比表面积增加。 Raman和 XRD结果表明,氧化处理使碳材料的石墨化程度增加,而高温热处理则降低了其石墨化程度。
   EA和 XPS结果表明, Hummer法酸性氧化处理可以使在碳材料中掺入的 N以石墨化的为主,高温热处理却使得石墨化氮转变为吡啶类的氮。 ORR结果发现,活性的石墨化氮倾向于使 ORR反应经历两电子过程,从而生成 H2O2为主要产物;而吡啶类氮的活性位点更倾向于使 ORR反应经过四电子过程,主产物是水。该结果有助于新型碳基氧还原催化剂的设计和分析。  相似文献   

15.
稀土元素对螺旋藻生长、光合和放氢作用的影响   总被引:6,自引:1,他引:6  
稀土元素对钝顶螺旋藻的光合作用和氢酶催化放氢活性有程度不同的影响。钕对藻体光合放氧速率的促进作用最为明显,镧强烈促进~(14)CO_2光合掺入藻体的速率,镧、铈和钕对藻体的生长及其氢酶催化放氢作用有明显的促进。但各种元素作用的最适浓度不同。  相似文献   

16.
研究了MgH2粒径对2LiBH4+MgH2体系放氢动力学性能的影响.采用高能球磨方式对50~100 μm 粒径的MgH2预球磨96 h, 其粒径可减小到100~200 nm.结果表明, 对MgH2进行预球磨可使2LiBH4+MgH2体系的两步放氢温度分别降低58和24℃, 并可明显提高体系的放氢动力学性能.XRD结果表明, MgH2粒径的减小有利于放氢过程中MgB2 的生成, 从而提高体系放氢产物的可逆吸氢能力.  相似文献   

17.
还原条件对CO2加氢用Fe/TiO2催化剂结构的影响   总被引:2,自引:0,他引:2  
索掌怀  寇元  王弘立 《催化学报》2001,22(4):348-352
 考察了5%Fe/TiO2催化剂在CO2加氢制低碳烃中的催化活性.最佳结果显示,CO2转化率为19.1%,C2+烃选择性为50.1%.用X射线粉末衍射、激光拉曼光谱、穆斯堡尔谱及FeK-吸收边扩展X射线吸收精细结构等研究了该催化剂在还原条件下的体相及表面结构.结果表明,在Fe/TiO2中,主要存在超顺磁的Fe0,α-Fe,配位不饱和的Fe2+物种及体相FeTiO3.还原温度对Fe/TiO2催化剂的体相和表面结构及催化性能有显著的影响.高温还原会破坏催化剂的表面结构,导致催化活性显著下降.将催化活性与体相及表面结构相关联,提出Fe0与配位不饱和的Fe2+物种之间的协同作用是催化剂显示较高活性的重要原因.  相似文献   

18.
高氧还原活性担载铂催化剂的研发是加快质子交换膜燃料电池商业化进程的主要手段之一。以石墨烯为碳源,1,10-菲啰啉为氮源,FeCl3为铁源,用浸渍法制备铁氮掺杂石墨烯(Fe/N-G)载体,并通过乙二醇还原法获得PtFe/N-G催化剂,探究铁氮原子的引入对石墨烯担载铂催化剂氧还原反应催化活性的影响。采用X射线衍射、比表面积和孔径分布测试、X射线光电子能谱等表征手段对载体及催化剂结构进行表征,使用电化学方法对载体和催化剂的氧还原反应活性进行测试。结果表明,PtFe/N-G催化剂的氧还原反应起始电位及半波电位分别为0.96 V、0.83 V,优于相同Pt担载量的商业20%Pt/C催化剂。铁氮掺杂后,石墨烯载体具有较大的孔径更有利于氧还原反应过程中生成物与反应物的传递,PtFe/N-G催化剂中存在吡啶氮和Fe-N型氮与铂纳米颗粒的协同催化,以及铂纳米颗粒与铁氮掺杂石墨烯载体间的相互作用,是PtFe/N-G催化剂具有优异的氧还原催化活性的可能原因。  相似文献   

19.
本文分别以三(对甲基苯基)膦,亚磷酸三(对甲基苯基)酯,亚磷酸三(对氯苯基)酯,亚磷酸三(邻甲氧基苯基)酯,亚磷酸三苯基酯等为配位体,以二羰基乙酰丙酮铑为催化剂母体,研究1—庚烯醛化反应的动力学和反应产物的分布,用动力学结果和测得的催化剂体系的红外光谱羰基伸缩振动频率与文献[1]结果比较,进一步说明烯醛化反应的速率不仅决定于其反应的控制步骤,而且与反应体系中活化络合体的浓度有关.亚磷酸三(3,4-二甲基苯基)酯有利于活化络合体的形成,其作为配位体时,醛化反应的速率较其它配位体高得多,同时由于其较大的立体化学效应,提高了对产物中直链醛的选择性.  相似文献   

20.
本文用二羰基乙酰丙酮铑作催化剂母体,分别以三苯基膦和亚磷酸三(3,4-二甲基苯基)酯为配体,研究了庚烯醛化的络合催化反应动力学,发现亚磷酸三(3,4-二甲基苯基)酯配位体对反应的活性和选择性均优于三苯基膦配位体。文章从电子效应及立体化学两方面讨论了实验结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号