首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A general algorithm for the prioritization and selection of plates for high-throughput screening is presented. The method uses a simulated annealing algorithm to search through the space of plate combinations for the one that maximizes some user-defined objective function. The algorithm is robust and convergent, and permits the simultaneous optimization of multiple design objectives, including molecular diversity, similarity to known actives, predicted activity or binding affinity, and many others. It is shown that the arrangement of compounds among the plates may have important consequences on the ability to design a well-targeted and cost-effective experiment. To that end, two simple and effective schemes for the construction of homogeneous and heterogeneous plates are outlined, using a novel similarity sorting algorithm based on one-dimensional nonlinear mapping.  相似文献   

4.
We present a novel approach for enhancing the diversity of a chemical library rooted on the theory of the wisdom of crowds. Our approach was motivated by a desire to tap into the collective experience of our global medicinal chemistry community and involved four basic steps: (1) Candidate compounds for acquisition were screened using various structural and property filters in order to eliminate clearly nondrug-like matter. (2) The remaining compounds were clustered together with our in-house collection using a novel fingerprint-based clustering algorithm that emphasizes common substructures and works with millions of molecules. (3) Clusters populated exclusively by external compounds were identified as "diversity holes," and representative members of these clusters were presented to our global medicinal chemistry community, who were asked to specify which ones they liked, disliked, or were indifferent to using a simple point-and-click interface. (4) The resulting votes were used to rank the clusters from most to least desirable, and to prioritize which ones should be targeted for acquisition. Analysis of the voting results reveals interesting voter behaviors and distinct preferences for certain molecular property ranges that are fully consistent with lead-like profiles established through systematic analysis of large historical databases.  相似文献   

5.
In this paper we introduce a quantitative model that relates chemical structural similarity to biological activity, and in particular to the activity of lead series of compounds in high-throughput assays. From this model we derive the optimal screening collection make up for a given fixed size of screening collection, and identify the conditions under which a diverse collection of compounds or a collection focusing on particular regions of chemical space are appropriate strategies. We derive from the model a diversity function that may be used to assess compounds for acquisition or libraries for combinatorial synthesis by their ability to complement an existing screening collection. The diversity function is linked directly through the model to the goal of more frequent discovery of lead series from high-throughput screening. We show how the model may also be used to derive relationships between collection size and probabilities of lead discovery in high-throughput screening, and to guide the judicious application of structural filters.  相似文献   

6.
A method of dynamically assembling molecular building blocks - DycoBlock - has been proposed and tested by Liu et al. This method is based on multiple-copy stochastic dynamics simulation in the presence of a receptor molecule. In this method, a novel algorithm was used to dynamically assemble the molecular building blocks to form candidate compounds. Currently, some new improvements have been incorporated into DycoBlock to make it more efficient. In the new version of DycoBlock, the binding energy and solvent accessible surface area (SASA) can be used to screen the resulting compounds. A simple clustering algorithm based on molecular similarity was developed and used to classify the remaining compounds. The revised DycoBlock was tested by breaking SC-558 - a selective inhibitor of cyclooxygenase-2 (COX-2) - into building blocks and reassembling them in the active site of the enzyme. The accuracy of recovery grew to 58.8% while it was only 16.7% in the previous version. Then, thirty-three kinds of molecular building blocks were used in the design of novel inhibitors and the investigation of diversity. As a result, a total of 1441 compounds was generated with high diversity. After the first screening procedure, there remained 864 reasonable compounds. The results from clustering indicate that the structural motifs in the diarylheterocycle class of COX-2-selective inhibitors have been generated using the revised DycoBlock, and their binding modes were investigated.  相似文献   

7.
8.
9.
Datasets of molecular compounds often contain outliers, that is, compounds which are different from the rest of the dataset. Outliers, while often interesting may affect data interpretation, model generation, and decisions making, and therefore, should be removed from the dataset prior to modeling efforts. Here, we describe a new method for the iterative identification and removal of outliers based on a k‐nearest neighbors optimization algorithm. We demonstrate for three different datasets that the removal of outliers using the new algorithm provides filtered datasets which are better than those provided by four alternative outlier removal procedures as well as by random compound removal in two important aspects: (1) they better maintain the diversity of the parent datasets; (2) they give rise to quantitative structure activity relationship (QSAR) models with much better prediction statistics. The new algorithm is, therefore, suitable for the pretreatment of datasets prior to QSAR modeling. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
Genetic algorithms have properties which make them attractive in de novo drug design. Like other de novo design programs, genetic algorithms require a method to reduce the enormous search space of possible compounds. Most often this is done using information from known ligands. We have developed the ADAPT program, a genetic algorithm which uses molecular interactions evaluated with docking calculations as a fitness function to reduce the search space. ADAPT does not require information about known ligands. The program takes an initial set of compounds and iteratively builds new compounds based on the fitness scores of the previous set of compounds. We describe the particulars of the ADAPT algorithm and its application to three well-studied target systems. We also show that the strategies of enhanced local sampling and re-introducing diversity to the compound population during the design cycle provide better results than conventional genetic algorithm protocols.  相似文献   

11.
The efficient synthesis of small molecules having many molecular skeletons is an unsolved problem in diversity-oriented synthesis (DOS). We describe the development and application of a synthesis strategy that uses common reaction conditions to transform a collection of similar substrates into a collection of products having distinct molecular skeletons. The substrates have different appendages that pre-encode skeletal information, called sigma-elements. This approach is analogous to the natural process of protein folding in which different primary sequences of amino acids are transformed into macromolecules having distinct three-dimensional structures under common folding conditions. Like sigma-elements, the amino acid sequences pre-encode structural information. An advantage of using folding processes to generate skeletal diversity in DOS is that skeletal information can be pre-encoded into substrates in a combinatorial fashion, similar to the way protein structural information is pre-encoded combinatorially in polypeptide sequences, thus making it possible to generate skeletal diversity in an efficient manner. This efficiency was realized in the context of a fully encoded, split-pool synthesis of approximately 1260 compounds potentially representing all possible combinations of building block, stereochemical, and skeletal diversity elements.  相似文献   

12.
This publication describes processes for the selection of chemical compounds for the building of a high-throughput screening (HTS) collection for drug discovery, using the currently implemented process in the Discovery Technologies Unit of the Novartis Institute for Biomedical Research, Basel Switzerland as reference. More generally, the currently existing compound acquisition models and practices are discussed. Our informatics, chemistry and biology-driven compound selection consists of two steps: 1) The individual compounds are filtered and grouped into three priority classes on the basis of their individual structural properties. Substructure filters are used to eliminate or penalize compounds based on unwanted structural properties. The similarity of the structures to reference ligands of the main proven druggable target families is computed, and drug-similar compounds are prioritized for the following diversity analysis. 2) The compounds are compared to the archive compounds and a diversity analysis is performed. This is done separately for the prioritized, regular and penalized compounds with increasingly stringent dissimilarity criterion. The process includes collecting vendor catalogues and monitoring the availability of samples together with the selection and purchase decision points. The development of a corporate vendor catalogue database is described. In addition to the selection methods on a per single molecule basis, selection criteria for scaffold and combinatorial chemistry projects in collaboration with compound vendors are discussed.  相似文献   

13.
14.
The commercially available carbohydrate 1,2-O-isopropylidene-alpha-D-xylofuranose was efficiently transformed into the high-added-value synthetic scaffold 8. The transformation requires the synthesis of the 5-O-tosyl derivative 7 and its subsequent intramolecular cyclization under basic conditions to give the cyclic enamine 8. Reaction of 8 with O-, N-, S-, and C-nucleophiles and amino acids allowed its efficient transformation (one-step, high yields, and easy purifications) into fused cyclic sugar derivatives with rather unusual molecular skeletons in a completely regio- and stereoselective manner. The characteristics of the sugar derivative 8 established here, high reactivity, synthetic accessibility, and the potential for conversion into a vast collection of products by the action of different nucleophiles, indicate that it will prove to be a useful chiral intermediate for achieving skeletal diversity. The constrained structures and dense functionalization of the polycyclic sugar derivatives generated from 8 make these compounds promising candidates for use as starting agents for the production of new analogues and as drugs.  相似文献   

15.
We report a novel peak sorting method for the two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOF-MS) system. The objective of peak sorting is to recognize peaks from the same metabolite occurring in different samples from thousands of peaks detected in the analytical procedure. The developed algorithm is based on the fact that the chromatographic peaks for a given analyte have similar retention times in all of the chromatograms. Raw instrument data are first processed by ChromaTOF (Leco) software to provide the peak tables. Our algorithm achieves peak sorting by utilizing the first- and second-dimension retention times in the peak tables and the mass spectra generated during the process of electron impact ionization. The algorithm searches the peak tables for the peaks generated by the same type of metabolite using several search criteria. Our software also includes options to eliminate non-target peaks from the sorting results, e.g., peaks of contaminants. The developed software package has been tested using a mixture of standard metabolites and another mixture of standard metabolites spiked into human serum. Manual validation demonstrates high accuracy of peak sorting with this algorithm.  相似文献   

16.
17.
By analogy with Monte Carlo algorithms, we propose new strategies for design and redesign of small molecule libraries in high-throughput experimentation, or combinatorial chemistry. Several Monte Carlo methods are examined, including Metropolis, three types of biased schemes, and composite moves that include swapping or parallel tempering. Among them, the biased Monte Carlo schemes exhibit particularly high efficiency in locating optimal compounds. The Monte Carlo strategies are compared to a genetic algorithm approach. Although the best compounds identified by the genetic algorithm are comparable to those from the better Monte Carlo schemes, the diversity of favorable compounds identified is reduced by roughly 60%.  相似文献   

18.
Massive efforts in molecular library synthesis have strived for the development of synthesis methodology which systematically delivers natural product‐like compounds of high spatial complexity. Herein, we present a conceptually simple approach that builds on the power of solid‐phase peptide synthesis to assemble precursor peptides (oligomers) designed to undergo oxidative cascade reactions. By harnessing the structural side‐chain diversity and inherent stereochemical features offered by readily available amino acids (monomers), a proof‐of‐concept collection of 54 skeletally and stereochemically diverse compounds was generated, and selected compounds were elaborated into isoform‐selective metalloprotease inhibitors.  相似文献   

19.
Combinatorial organic synthesis (combinatorial chemistry or CC) and ultrahigh-throughput screening (UHTS) are speeding up drug discovery by increasing capacity for making and screening large numbers of compounds. However, a key problem is to select the smaller set of "representative" compounds from a virtual library to make or screen. Our approach is to select drug-like as well as structurally diverse compounds. The compounds, which are not very drug-like, are less taken into account or excluded even if they contribute to the diversity of the collection. Hence, the first step in the compound selection is to rank compounds in drug-like "degree". To quantify the drug-like "degree", drug-like index (DLI) is introduced in this paper. A compound's DLI is calculated based upon the knowledge derived from known drugs selected from Comprehensive Medicinal Chemistry (CMC) database. The paper describes the way of this knowledge base is formed and the procedure for selecting drug-like compounds.  相似文献   

20.
Fragment‐based lead generation has proven to be an effective means of identifying high‐quality lead compounds for drug discovery programs. However, the fragment screening sets often used are principally comprised of sp2‐rich aromatic compounds, which limits the structural (and hence biological) diversity of the library. Herein, we describe strategies for the synthesis of a series of partially saturated bicyclic heteroaromatic scaffolds with enhanced sp3 character. Subsequent derivatization led to a fragment collection featuring regio‐ and stereo‐controlled introduction of substituents on the saturated ring system, often with formation of new stereocenters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号