首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Siloxane-anchored, self-assembled monolayers (SAMs) on single crystal Si were prepared with a variety of surface functional groups using a single commercially available surfactant (1-bromo-11-(trichlorosilyl)undecane) followed by in situ transformations. Polar (thioacetate and thiol), nonpolar (methyl), acidic (sulfonic and carboxylic), basic (various amines), and ionic (alkylammonium) surface functionalities were prepared. For primary amine and sulfonate surfaces, the degree of surface charge as a function of pH was determined ex situ using X-ray photoelectron spectroscopy (XPS). Sulfonate SAMs exhibited much higher effective pKa (approximately 2) than dilute sulfonic acid (-5 to -6), and amine SAMs exhibited much lower pKa (approximately 3) than dilute organic amines (approximately 10). This is attributed to the stabilization of nonionized groups by adjacent ionized groups in the SAM. Zeta potentials of these SAMs as a function of pH were consistent with the XPS results and indicated that ionizable SAM surfaces can generate surface potentials much higher than those of nonionic SAMs (thioacetate, methyl) and typical oxide surfaces.  相似文献   

2.
Summary Wet-chemical cleaning procedures of Si(100) wafers are surface analytically characterized and compared. Hydrophobic surfaces show considerably less native oxides in comparison to hydrophilic surfaces.The growth of the oxide is determined as a function of exposure to air by means of XPS measurements. The chemically shifted Si2p XPS signal is utilized for the quantification of the growth kinetics.One hour after cleaning no chemically shifted Si2p XPS peak is discernible on the hydrophobic surfaces. Assuming homogeneous oxide growth, the detection limit of native oxides is estimated to be below 0.05 nm using an emission angle of 18° with respect to the wafer surface. The calculation of the oxide thickness from the chemically shifted and nonchemically shifted Si2p XPS peak intensities is carried out according to Finster and Schulze [1]. For more than a day after cleaning no surface oxides can be identified on the hydrophobic surfaces. The oxide growth kinetics is logarithmic. The very slow oxidation rate cannot be attributed to fluorine residues since no fluorine is seen by XPS. We explain the slow oxidation rate by a homogeneous hydrogen saturated Si(100) wafer surface.
Oberflächenanalytische Charakterisierung oxidfreier Si(100)-Waferoberflächen
  相似文献   

3.
A new method of making physically self-assembled monolayers (PSAMs) on hydrophilic solid surfaces is presented. This method uses a mixture of a nonpolar solvent, such as hexane, and a strong polar solvent, such as ethanol, to dissolve the lipids. The deposition of two lecithin lipids, dipalmitoylphosphatidylcholine (DPPC) and dilauroylphosphatidylcholine (DLPC), has been studied. These lipids physically self-assemble, or adsorb, onto hydrophilic silicon oxide/silicon surfaces when such surfaces are in contact with the lipid solution. The adsorbed layers were probed with ex-situ attenuated total reflection infrared (ATR-IR) spectroscopy, ellipsometry, contact angle measurements, and atomic force microscopy (AFM). The thicknesses of the adsorbed monolayers are about 2.8 +/- 0.2 nm for DPPC and 2.0 +/- 0.2 nm for DLPC, as determined by ellipsometry and AFM. Smooth, uniform monolayers of controlled surface density are formed. The surface density of adsorbed layers is comparable to those of close-packed lipid monolayers, as calculated from the ellipsometry and ATR-IR results. Producing controlled-thickness monolayers has applications in boundary lubrication, biomaterials, sensor technologies, and electronics. The method can be used for depositing many biological surfactants or lipids without the need to modify these surfactants chemically to form chemical bonds with the surfaces, as required by the usual chemical SAMs. Moreover, the new method has several advantages compared to the Langmuir-Blodgett (LB) method.  相似文献   

4.
比较了3种具有羟基表面SiO2层的差异:紫外光照SAMs形成的羟基表面,紫外光照射前、照射后的羟基表面;用光照前后表面的差异,结合化学浴沉积技术在单晶硅基底上制得了TiO2微图案薄膜。系统考察了光源、硅片表面性质的变化、溶液等方面对图案生成的影响。实验表明TiO2沉积在未照区,电子和空穴动力学上的差异造成光照区表面正电荷增多,抑制了TiO2的沉积。该方法不需要光刻胶和自组装膜作为辅助模板,具有简单廉价的特点。  相似文献   

5.
Adhesive and frictional forces between surfaces modified with self-assembled monolayers (SAMs) and immersed in solvents were measured with chemical force microscopy as functions of surface functionality and solvent. Si/SiO2 substrates were modified with SAMs of alkylsiloxanes (SiCl3(CH2)n-X), and gold-coated AFM tips were modified with SAMs of alkylthiolates (HS-(CH2)n-X). SAMs of alkylsiloxanes terminated in a methyl or oxidized vinyl group; SAMs of alkanethiolates terminated in a methyl or carboxyl group. Adhesive and frictional forces were measured in hexadecane, ethanol, 1,2-propanediol, 1,3-propanediol, and water. The work of adhesion (W) was calculated with the Johnson-Kendall-Roberts theory of adhesive contact. The JKR values agreed well with values derived from the Fowkes-van Oss-Chaudhury-Good surface tension model and from contact angle results. Calculated values of W for all combinations of contacting surfaces and solvents spanned two orders of magnitude. W correlated with the surface tension of the solvent for hydrophobic/hydrophobic interactions; hydrophilic/hydrophilic and hydrophobic/hydrophilic interactions were more complex. Friction forces were fit to a modified form of Amonton's law. For any solvent, friction coefficients were largest for the hydrophilic/hydrophilic contacting surfaces. The friction coefficient for any contacting pair was largest in hexadecane. In polar solvents, friction coefficients scaled with solvent polarity only for hydrophobic/hydrophobic contacting pairs. Copyright 1999 Academic Press.  相似文献   

6.
Neutron reflectivity experiments conducted on self-assembled monolayers (SAMs) against polar (water) and nonpolar (organic) liquid phases reveal further evidence for a density reduction at hydrophobic-hydrophilic interfaces. The density depletion is found at the interface between hydrophobic dodecanethiol (C12) and hexadecanethiol (C16) SAMs and water and also between hydrophilic SAMs (C12/C11OH) and nonpolar fluids. The results show that the density deficit of a fluid in the boundary layer is not unique to aqueous solid-liquid interfaces but is more general and correlated with the affinity of the liquid to the solid surface. In water the variation of pH has only minor influence, while different electrolytes taken from the Hofmeister series seem to increase the depletion. On hydrophobic SAMs an increase in density depletion with temperature was observed, in agreement with Monte Carlo simulations performed on corresponding model systems. The increase in the water density depletion layer is governed by two effects: the surface energy difference between water and the substrate and the chemical potential of the aqueous phase.  相似文献   

7.
Partial and complete self‐assembled monolayers (SAMs) of octadecylphosphonic acid (OPA) have been deposited onto air‐exposed surfaces of the metals copper, silver, gold, iron, silicon and aluminium, as well as onto freshly cleaved, air‐exposed surfaces of the minerals muscovite and biotite. The line width of the C(1s) signal in the XPS spectra of the surface narrowed, as the extent of coverage increased to 100%, to a half‐width of 0.9 eV. Moreover, the line widths associated with the insulating muscovite substrate also became substantially narrower as OPA coverage increased. Binding energy differences on this charge‐shifted surface were found to be more consistent when OPA was used as a charge reference, compared to using adventitious carbon as a reference. OPA coverage of the air‐exposed metals copper, silver, gold and iron also produced narrow C(1s) spectra whose binding energies were consistently close to 284.9 eV. The C(1s) binding energy positions on Al and Si samples were charge‐shifted by the insulating nature of the thin oxide formed on air exposure, or by the insulating nature of the substrate in the case of the minerals. Correction of the observed C(1s) energy position to 284.9 eV gave sets of elemental binding energies for the substrate materials that were reproducible. Thus, OPA coverage could be a possible alternative candidate for use in charge correction of binding energies of insulating materials. The OPA coverage cases were modelled using the software QUASES? Analyse. For the substrates copper, silver, gold, iron and aluminium, analyses of the metal core line spectra gave OPA overlayer thicknesses close to those measured by AFM (1.6 nm). However, QUASES? analyses of the C(1s) extrinsic backgrounds for the same surfaces required the use of an attenuation length of only 0.4 nm to derive a comparable thickness—much lower than literature values for carbon. This discrepancy is ascribed to the structured nature of the SAM. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Targeted delivery of magnetic iron oxide nanoparticles (IONPs) to a specific tissue can be achieved by conjugation with particular biological ligands on an appropriately functionalized IONP surface. To take best advantage of the unique magnetic properties of IONPs and to maximize their blood half-life, thin, strongly bonded, functionalized coatings are required. The work reported herein demonstrates the successful application of phosphonate-anchored self-assembled monolayers (SAMs) as ultrathin coatings for such particles. It also describes a new chemical approach to the anchoring of antibodies on the surface of SAM-coated IONPs (using nucleophilic aromatic substitution). This anchoring strategy results in stable, nonhydrolyzable, covalent attachment and allows the reactivity of the particles toward antibody binding to be activated in situ, such that prior to the activation the modified surface is stable for long-term storage. While the SAMs do not have the well-packed crystallinity of other such monolayers, their structure was studied using smooth model substrates based on an iron oxide layer on a double-side polished silicon wafer. In this way, atomic force microscopy, ellipsometry, and contact angle goniometry (tools that could not be applied to the nanoparticles' surfaces) could contribute to the determination of their monomolecular thickness and uniformity. Finally, the successful conjugation of IgG antibodies to the SAM-coated IONPs such that the antibodies retain their biological activity is verified by their complexation to a secondary fluorescent antibody.  相似文献   

9.
An alternative method for fabricating functionalized, atomic force microscopy (AFM) tips is presented. This technique is simple and requires only minimal preparation and tip modification to generate chemically sensitive probes that have a robust organic monolayer of flexible terminal chemistry attached to the surface. Specifically, commercially microfabricated Si3N4 AFM tips were modified with self-assembled monolayers (SAMs) of octadecyltrichlorosilane and (11-bromoundecyl)trichlorosilane after removing the native silicon oxide surface layer with concentrated hydrofluoric acid. The structure of these SAM films on solid silicon nitride surfaces was studied using contact angle goniometry and Fourier transform infrared spectroscopy. Pull-off force measurements on various bare (mica, graphite, and silicon) and SAM-functionalized substrates confirm that mechanically robust, long-chain organic silane SAMs can be formed on HF-treated Si3N4 tips without the presence of an intervening oxide layer. Adhesion experiments show that the integrity of the organic film on the chemically modified tips is maintained over repeated measurements and that the functionalized tips can be used for chemical sensing experiments since strong discrimination between different surface chemistries is possible.  相似文献   

10.
We report thiol-on-gold self-assembled monolayers (SAMs) that can be photodeprotected using soft UV irradiation (lambda = 365 nm) to yield CO(2)H functionalized surfaces complementing those reported previously, which yielded NH(2) functionalized surfaces. The photolysis of these SAMs were monitored using a combination of surface sensitive techniques. In the SAM environment the photodeprotection yields are lower than those obtained for equivalent reactions in dilute solution. The protected carboxylic acids SAMs are shown to have a low yield approximately 50% due to competing photoreduction reactions of the nitro group. The results from infrared studies show that, as the photolysis progresses, the long chain protected residues reorganize and shield the functional COOH groups, thereby reducing the hydrophilic character of the surface.  相似文献   

11.
A novel approach in the fabrication of microarrays of dye and protein on fused silica plates using the laser-induced backside wet etching (LIBWE) technique is described. The surface of fused silica plates was initially precoated using trimethoxysilane self-assembled monolayers (SAMs) and then etched using the LIBWE method to obtain the desired microstructures on the plate surface. Using this technique, the SAMs on the nonirradiated areas were able to survive the LIBWE process and were used as templates for the subsequent deposition of dye molecules or proteins via chemical bonding or physical adsorption. In the case of fused silica plates precoated with fluorinated SAMs, the LIBWE method is used to remove the SAMs to expose the etched silica surfaces, on which a thin layer of pyranine molecules can be site-selectively deposited using an aqueous solution of pyranine. In another application, an ethanol solution of rhodamine 6G was preferentially deposited onto the nonirradiated areas. In yet another application, bovine serum albumin was preferentially deposited onto the laser-irradiated areas; in this case, the fused silica plates were precoated with poly(ethylene oxide) SAMs. Interestingly, when an aqueous suspension of polystyrene (PS) microbeads was cast onto the fused silica precoated with the fluorinated SAMs, hexagonally close-packed PS microbeads were deposited into the etched cavities. Depositions of the dye, protein, and microbeads were confirmed by visualization using a fluorescence microscope and scanning electron microscope.  相似文献   

12.
Self-assembled monolayer (SAM) formation of alkanethiols with ionic, hydrophilic terminal functionalities onto various O(2) plasma/ethanol pretreated gold substrates was characterized to explore the effect of gold surface oxide on the SAM packing quality. Oxygen adsorption induced by the Au(2)O(3) surface residuals are observed on the plasma-oxidized and O(2) plasma/ethanol-rinsed pretreated Au surfaces while no obvious adsorbed oxygen is found on freshly coated and O(2) plasma/ethanol sonication pretreated Au substrates. A model for the formation of hydrophilic terminated SAMs, -OH, -COOH, and -PO(3)H(2) is proposed. According to this model, the ionic and/or other binding interactions between the surface Au(2)O(3) and the alkanethiol hydrophilic terminal end as well as the interactions between the terminal SAM functionalities could cause the packing disorder found on these three SAMs formed on Au substrates containing Au(2)O(3) surface species. Copyright 2001 Academic Press.  相似文献   

13.
The microscopic behaviors of a water layer on different hydrophilic and hydrophobic surfaces of well ordered self-assembled monolayers (SAMs) are studied by molecular dynamics simulations. The SAMs consist of 18-carbon alkyl chains bound to a silicon(111) substrate, and the characteristic of its surface is tuned from hydrophobic to hydrophilic by using different terminal functional groups ( CH 3 , COOH). In the simulation, the properties of water membranes adjacent to the surfaces of SAMs were reported by comparing pure water in mobility, structure, and orientational ordering of water molecules. The results suggest that the mobility of water molecules adjacent to hydrophilic surface becomes weaker and the molecules have a better ordering. The distribution of hydrogen bonds indicates that the number of water-water hydrogen bonds per water molecule tends to be lower. However, the mobility of water molecules and distribution of hydrogen bonds of a water membrane in hydropho- bic system are nearly the same as those in pure water system. In addition, hydrogen bonds are mainly formed between the hydroxyl of the COOH group and water molecules in a hydrophilic system, which is helpful in understanding the structure of interfacial water.  相似文献   

14.
A photoassisted anodization process to fabricate arrays of uniform and straight macropores at selected areas of a Si wafer surface was developed. The front- and backside surfaces of n-type Si(100) wafers were coated with a thin Si(3)N(4) layer, and the frontside layer was micro-patterned using photolithography and reactive ion etching to form an array of microscopic openings at selected areas. The inverted pyramid-shape micropits were formed at these openings by anisotropic etching using aqueous KOH solution; these pits act as the initiation sites for the anodization to form macropores. The electrochemical etching was carried out in aqueous HF solution under illumination from the backside of the wafer, on which Au/Cr electric contact was formed following removal of the Si(3)N(4) layer. To improve the uniformity of the formation condition of the macropores at the selected area, holes were area-selectively generated by controlling the illumination condition during the anodization. For this, micropatterns were formed on the Au/Cr layer at the backside surface, which were aligned to those at the frontside surface. The parameters, such as HF concentration, current density, and wafer thickness, i.e., hole diffusion length, were optimized, and the arrays of uniform and high-aspect-ratio macropores were formed at the selected area of the domain at the silicon surface.  相似文献   

15.
The properties of interfacial water on Cl- and H-terminated Si(111) surfaces are investigated using a first-principles approach and characterized by means of energetic analysis combined with hydrogen-bond counting. The interaction of water with both substrates is found to be significantly weak, although bonding with the Cl-terminated Si(111) surface is relatively stronger because of the electrostatic contribution. According to a molecular picture for attributing the hydrophilic/hydrophobic character, both surfaces should be considered hydrophobic, at variance with the interpretation of recent ultrafast electron crystallography experiments, which seems instead to support a hydrophilic nature of the Cl-terminated Si(111) substrate.  相似文献   

16.
The adsorption of a 14-amino acid amphiphilic peptide, LK14, which is composed of leucine (L, nonpolar) and lysine (K, charged), on hydrophobic polystyrene (PS) and hydrophilic silica (SiO2) was investigated in situ by quartz crystal microbalance (QCM), atomic force microscopy (AFM), and sum frequency generation (SFG) vibrational spectroscopy. The LK14 peptide, adsorbed from a pH 7.4 phosphate-buffered saline (PBS) solution, displayed very different coverage, surface roughness and friction, topography, and surface-induced orientation when adsorbed onto PS versus SiO2 surfaces. Real-time QCM adsorption data revealed that the peptide adsorbed onto hydrophobic PS through a fast (t < 2 min) process, while a much slower (t > 30 min) multistep adsorption and rearrangement occurred on the hydrophilic SiO2. AFM measurements showed different surface morphologies and friction coefficients for LK14 adsorbed on the two surfaces. Surface-specific SFG spectra indicate very different ordering of the adsorbed peptide on hydrophobic PS as compared to hydrophilic SiO2. At the LK14 solution/PS interface, CH resonances corresponding to the hydrophobic leucine side chains are evident. Conversely, only NH modes are observed at the peptide solution/SiO2 interface, indicating a different average molecular orientation on this hydrophilic surface. The surface-dependent difference in the molecular-scale peptide interaction at the solution/hydrophobic solid versus solution/hydrophilic solid interfaces (measured by SFG) is manifested as significantly different macromolecular-level adsorption properties on the two surfaces (determined via AFM and QCM experiments).  相似文献   

17.
One-dimensional photonic crystals (rugate filters) constructed from porous silicon were modified by the chemical hydrosilylation of terminal alkenes (decyl, 10-carboxydecyl, and 10-hydroxydecyl) in the presence of a concentration gradient of diazonium salt initiators. The concentration gradient was generated by vertically orienting the Si wafer containing the porous Si layer in an alkene solution and then introducing the diazonium salt at the bottom edge of the wafer. Slow diffusion of the salt led to a varying density of grafted alkene across the surface of the porous layer. The modified surfaces were end-capped with methyl groups by electrochemical grafting to impart improved stability and greater hydrophobicity. The surface modified with 10-carboxydecyl species was ionized by deprotonation of the carboxy groups to increase the hydrophilicity of this porous silicon surface. The pore-wall modification gradients were characterized using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS). The more hydrophilic portion of the gradient changes color when water infiltrates the porous nanostructure because of a shift in the stop band of the photonic crystal. The more hydrophobic portion of the gradient excludes water, although mixtures of water and ethanol will infiltrate this region, depending on the concentration of ethanol in the mixture. A simple visual sensor for small quantities of ethanol in water, capable of detecting ethanol concentrations of between 0 and 8% with a resolution of 1% is demonstrated.  相似文献   

18.
We determined the shifts in the energy levels of approximately 15 nm thick poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] films deposited on various substrates including self-assembled monolayer (SAM) modified Au surfaces using photoelectron spectroscopy. As the unmodified substrates included Au, indium tin oxide, Si (with native oxide), and Al (with native oxide), a systematic shift in the detected energy levels of the organic semiconductor was observed to follow the work function values of the substrates. Furthermore, we used polar SAMs to alter the work function of the Au substrates. This suggests the opportunity to control the energy level positions of the organic semiconductor with respect to the electrode Fermi level. Photoelectron spectroscopy results showed that, by introducing SAMs on the Au surface, we successfully increased and decreased the effective work function of Au surface. We found that in this case, the change in the effective work function of the metal surface was not reflected as a shift in the energy levels of the organic semiconductor, as opposed to the results achieved with different substrate materials. Our study showed that when a substrate is modified by SAMs (or similarly by any adsorbed molecules), a new effective work function value is achieved; however, it does not necessarily imply that the new modified surface will behave similar to a different metal where the work function is equal to the effective work function of the modified surface. Various models and their possible contribution to this result are discussed.  相似文献   

19.
Staphylococcus aureus adhesion on self-assembled monolayers (SAMs) formed by the adsorption of alkanethiols on transparent gold films has been studied in real time under well-defined flow conditions using a radial flow chamber and an automated videomicroscopy system. SAMs terminated with methyl, hydroxyl, carboxylic acid and tri(ethylene oxide) groups were investigated. SAMs were characterized using contact angle measurements, ellipsometry and X-ray photoelectron spectroscopy. Adhesion experiments using the Newman strain of S. aureus were performed on bare monolayers and monolayers pre-incubated with fibrinogen. Adhesion was found to be lowest on the ethylene oxide-bearing surfaces, followed by the hydroxyl surfaces. Adhesion on the carboxylic- and methyl-terminated SAMs was much higher. Bacterial adhesion was higher on the hydrophobic surfaces. Pre-incubation of surfaces with fibrinogen minimized the effect of the surface properties of the substrate. Adhesion was increased on all surfaces when fibrinogen was present and no significant differences were observed between adhesion to the different SAMs. This study showed that surfaces rich in ethylene oxide groups can be effectively used to prevent bacterial adhesion. However, under physiological conditions, most of the substrate properties are masked by the presence of the adsorbed protein layer and the effect of substrate properties on bacteria adhesion under flow is minimal.  相似文献   

20.
We use precision ellipsometry to evaluate the existence of nanometer thick vapor films at the surface between a liquid and a hydrophobic alkylsilane coated Si wafer. We find no evidence for such vapor films. All of our fluid-solid ellipsometry measurements can be explained using a double layer model consisting of an oxide plus silane layer between the fluid and bulk Si substrate. We have carefully checked our ellipsometer for residual phase shifts which might, under certain circumstances, cause a mis-interpretation of the experimental results. We find that the most reliable ellipsometric results for thin films (which are relatively immune to the presence of small residual phase shifts) are collected at the Brewster angle. The dielectric constant of the native oxide coating is also compared with similar measurements for two thick (approximately 100-300 nm) thermally grown oxide coatings on a Si wafer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号