首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The Fourier transform infrared and the Fourier transform Raman spectra of N-di-isopropylphosphorylguanidine (DPG) in the solid state and in aqueous solution were recorded and analyzed. Assuming Cs symmetry for different structural fragment of the molecule, the experimental and calculated band assignments of the nu(NH), delta(HNH), delta(CNH), nu(C=N), nu(PN), nu(CN), nu(PO) and nu(OC) normal modes suggested that the DPG exists as a tautomeric contribution of the phosphorylamine (I) and N-phosphorylimine (II) structural forms. [structures: see text]  相似文献   

2.
The room-temperature syntheses and single-crystal structures of C(4)N(2)H(12).NH(4)Cl(3).H(2)O and C(6)N(2)H(14).NH(4)Cl(3) are reported. These novel molecular perovskites contain vertex-sharing octahedral (NH(4))Cl(6) arrays which replicate the octahedral packing in the cubic (SrTiO(3)) and 2-H hexagonal (BaNiO(3)) perovskite structures, respectively. The structures are completed by doubly protonated organic cations and, for the cubic phase, water molecules. Crystal data: C(4)N(2)H(12).NH(4)Cl(3).H(2)O, M(r) = 230.56, orthorhombic, Pbcm (No. 57), a = 6.5279(13) A, b = 12.935(3) A, c = 12.849(3) A, V = 1085.0(4) A(3), Z = 4; C(6)N(2)H(14).NH(4)Cl(3), M(r) = 238.59, trigonal, Pthremacr;c1 (No. 165), a = 16.1616(2) A, c = 22.3496(4) A, V = 5055.5(2) A(3), Z = 18.  相似文献   

3.
Five salts of 1,2,4,5-benzenetetracarboxylic acid (pyromellitic acid), [C6H2(COO)4H4], have been synthesized and investigated by infrared and Raman spectroscopy and by single crystal X-ray diffraction methods: sodium salt [Na2(H2O)2][C6H2(COO)4H2], potassium salt [K(H2O)3][C6H2(COO)4H3] and transition metal salts [M(H2O)6][C6H2(COO)4H2], which M = Mn, Ni and Zn. Crystal structures of all five compounds show short intramolecular asymmetric hydrogen bonds (SHB) between adjacent carboxyl groups with O...O distance average of 2.40 A. The Raman and infrared spectra reported indicate the presence of short hydrogen bonds in all salts, in agreement with the X-ray data. The O-H stretching mode [nu(OH)] had been observed at about 2500 cm(-1). Deuterated analogues were synthesized and their Raman spectra show that nu(OH)/nu(OD) ratio average is about unit. The symmetric [nu(sym)(O..H..O)] and asymmetric [nu(asym)(O..H..O)] stretching modes have been attributed about 300 and 870 cm(-1), respectively, in all salts, and for deuterated analogues, the ratio nu(OH)/nu(OD) to nu(sym)(O..H..O, O..D..O) is close to unit like it occurs in nu(OH). The vibrational modes, mainly SHB modes, are tentatively assigned by molecular orbital ab initio calculations of pyromellitic acid and anions [C6H2(COO)4H3]- and [C6H2(COO)4H2]2-. Geometry optimizations showed a good agreement with experimental data. Frequency calculation confirms the assignment of specific vibrational modes. Ab initio calculations show that nu(C=O) and nu(sym)(COO) are strongly coupled with in plane OH bending [delta(OH)]. In Raman spectra of deuterated analogues is observed a frequency shift of these bands.  相似文献   

4.
The IR and Raman spectra of the isostructural M'M'PO4.H2O compounds (M'=K+, NH4+; M'=Mn2+, Co2+, Ni2+) are reported and discussed with respect to the normal vibrations of the PO(4)3- ions. The vibrational behavior of PO4(3-) is in agreement with its low site symmetry Cs in the lattices-the symmetric nu1 and nu2 modes are activated in the IR spectra and the degeneration of the asymmetric nu3 and nu4 modes is lifted. A relatively large unit-cell group splitting is observed for nu1 in both the IR and Raman spectra and for nu3 in Raman spectra. It has been established that the mean wavenumbers of the P-O stretches (nuPO) are not affected by the M2+ ions present, but they are lower for the NH4-series than for the K-one (predominant influence of both the smaller repulsion potential and the hydrogen bonds in the NH4-lattices over the influence of the M+-O interactions). The extent of the energetic distortion of the PO(4)3- ions has been estimated based on the spectroscopic data for the site group splitting of the asymmetric modes (Deltanu3 and Deltanu4), the separation between the highest and the lowest wavenumbered P-O stretches (Deltanumax) and the intensity of nu1 in the IR spectra. The data provide an evidence that the PO4(3-) ions in KM'PO4.H2O are more distorted regarding the P-O bond lengths than those in NH4M'PO4.H2O, but their angular distortion is the same in both series. The trends for the energetic distortion of the phosphate ions found from the spectroscopic data correspond to the data for their geometric distortion deduced from the values of the distortion indices DI(PO) and DI(OPO).  相似文献   

5.
Raman spectra of the thiomolybdate ion in the compounds [Cu.NH4][MoS4] and X2[MoS4], where X=NH4+, Rb+ or Cs+, are reported and used to confirm the hypothesis presented in an earlier paper [J. Chem. Phys. 94 (1991) 5946], that there is solid state induced vibrational coupling between the nu1 and nu3 modes of tetrahedral ions.  相似文献   

6.
The compound (n-Bu4N)2Tc2Br8 was prepared by the metathesis of (n-Bu4N)2Tc2Cl8 with HBr (g) in dichloromethane and characterized by X-ray absorption fine structure spectroscopy and UV-vis spectroscopy. Analysis of the data gives a Tc-Tc distance of 2.16(1) A and a Tc-Br distance of 2.48(1) A. The Tc(III) oxidation state was inferred by the position of the edge absorption, which reveals a shift of 12 eV between (n-Bu4N)2Tc2Br8 and NH4TcO4. The analogous shift between (n-Bu4N)2Tc2Cl8 and NH4TcO4 is 11 eV. The UV-vis spectrum of Tc2Br8(2-) in dichloromethane exhibits the characteristic delta --> delta* transition at 13,717 cm(-1). The M2X8(2-) (M = Re, Tc; X = Cl, Br) UV-vis spectra are compared, and the position of the delta --> delta* transition discussed.  相似文献   

7.
The Raman and infrared spectra of solid K2(12)C2O4 x H2O are reported together with, for the first time, the corresponding Raman and infrared spectra of solid K2(13)C2O4 x H2O. Raman spectra of aqueous solutions of both isotopomers are also reported. In the solid state the oxalate anion is planar with D2h symmetry in this salt, whereas in aqueous solution the Raman spectra of the anion are best interpreted on the basis of D2d symmetry. The Raman spectra of solid (NH4)2(12)C2O4 x H2O and (NH4)2(13)C2O4 x H2O, in which the oxalate anion is twisted from planarity by 28 degrees about the CC bond, have also been recorded. Several reassignments have been made. The harmonic force field for the oxalate anion in the D2h, D2 and D2d geometries has been determined in part, and approximate values of key valence force constants determined. All the observed band wavenumbers and 12C/13C isotopic shifts are well reproduced by the force fields. The potential energy distribution of the totally symmetric normal modes of planar oxalate indicates that each mode consists of extensively mixed symmetry corrdinates and that the labels previously used for the bands seen here at 475 and 879 cm(-1) would better be described as v(CC) and deltaS(CO2), respectively, putting them in the same wavenumber order as v(NN) and deltaS(NO2) for the isoelectronic and isostructural molecule N2O4. The stretching force constants of N2O4 and planar C2O4(2-) are established to be in the order f(NN) < f(CC) and f(NO) > f(CO), consistent with the known relative bond lengths.  相似文献   

8.
The gas phase infrared spectrum (3250-3810 cm-1) of the singly hydrated ammonium ion, NH4+(H2O), has been recorded by action spectroscopy of mass selected and isolated ions. The four bands obtained are assigned to N-H stretching modes and to O-H stretching modes. The N-H stretching modes observed are blueshifted with respect to the corresponding modes of the free NH4+ ion, whereas a redshift is observed with respect to the modes of the free NH3 molecule. The O-H stretching modes observed are redshifted when compared to the free H2O molecule. The asymmetric stretching modes give rise to rotationally resolved perpendicular transitions. The K-type equidistant rotational spacings of 11.1(2) cm-1 (NH4+) and 29(3) cm-1 (H2O) deviate systematically from the corresponding values of the free molecules, a fact which is rationalized in terms of a symmetric top analysis. The relative band intensities recorded compare favorably with predictions of high level ab initio calculations, except on the nu3(H2O) band for which the observed value is about 20 times weaker than the calculated one. The nu3(H2O)/nu1(H2O) intensity ratios from other published action spectra in other cationic complexes vary such that the nu3(H2O) intensities become smaller the stronger the complexes are bound. The recorded ratios vary, in particular, among the data collected from action spectra that were recorded with and without rare gas tagging. The calculated anharmonic coupling constants in NH4+(H2O) further suggest that the coupling of the nu3(H2O) and nu1(H2O) modes to other cluster modes indeed varies by orders of magnitude. These findings together render a picture of a mode specific fragmentation dynamic that modulates band intensities in action spectra with respect to absorption spectra. Additional high level electronic structure calculations at the coupled-cluster singles and doubles with a perturbative treatment of triple excitations [CCSD(T)] level of theory with large basis sets allow for the determination of an accurate binding energy and enthalpy of the NH4+(H2O) cluster. The authors' extrapolated values at the CCSD(T) complete basis set limit are De [NH4+-(H2O)]=-85.40(+/-0.24) kJ/mol and DeltaH(298 K) [NH4+-(H2O)]=-78.3(+/-0.3) kJ/mol (CC2), in which double standard deviations are indicated in parentheses.  相似文献   

9.
The reaction of platinum(IV) complex trans-[PtCl4(EtCN)2] with pyrazoles 3,5-RR'pzH (R/R' = H/H, Me/H, Me/Me) leads to the formation of the trans-[PtCl4{NH=C(Et)(3,5-RR'pz)}2] (1-3) species due to the metal-mediated nitrile-pyrazole coupling. Pyrazolylimino complexes 1-3 (i) completely convert to pyrazole complexes cis-[PtCl4(3,5-RR'pzH)2] by elimination of EtCN upon reflux in a CH2Cl2 solution or upon heating in the solid state; (ii) undergo exchange at the imino C atom with another pyrazole different from that contained in the pyrazolylimino ligand. The reaction of trans-[PtIICl2(EtCN)2] and 3,5-RR'pzH, conducted under conditions similar to those for trans-[PtIVCl4(EtCN)2], is much less selective, and the composition of the products strongly depends on the pyrazole employed: (a) with pzH, the reaction gives a mixture of three products, i.e., [PtCl2NH=C(Et)pz-kappa2N,N}] (4), [PtCl(pzH){NH=C(Et)pz-kappa2N,N}]Cl (5), and [Pt(pzH)2{NH=C(Et)pz-kappa2N,N}]Cl2 (6) (complexes 5 and 6 are rather unstable and gradually transform to trans-[PtCl2(pzH2] and [Pt(pzH)(4)]Cl(2) and free EtCN); (b) with 3,5-Me(2)pzH, the reaction leads to the formation of [PtCl2NH=C(Et)(3,5-Me2pz)-kappa2N,N}] (7) and [PtCl(3,5-Me2pzH)3]Cl (8); (c) in the case of asymmetric pyrazole 3(5)-MepzH, which can be added to EtCN and/or bind metal centers by any of the two nonequivalent nitrogen sites, a broad mixture of currently unidentified products is formed. The reduction of 1-3 with Ph3P=CHCO2Me in CHCl3 allows for the formation of corresponding platinum(II) compounds trans-[PtCl2{NH=C(Et)(3,5-RR'pz)}2] (9-11). Ligands NH=C(Et)(3,5-RR'pz) (12-14) were almost quantitatively liberated from 9-11 with 2 equiv of 1,2-bis-(diphenylphosphino)ethane in CDCl3, giving free imines 12-14 in solution and the precipitate of trans-[Pt(dppe)2](Cl)2. Pyrazolylimines 12-14 undergo splitting in CDCl3 solution at 20-25 degrees C for ca. 20 h to furnish the parent propiononitrile and the pyrazole 3,5-RR'pzH, but they can be synthetically utilized immediately after the liberation.  相似文献   

10.
1H, 13C, and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with quinolines (L=quinoline-quin, or isoquinoline-isoquin; LL=2,2'-biquinoline-bquin), having the general formulae trans-/cis-[ML2Cl2] and [M(LL)Cl2], were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H coordination shifts of various signs and magnitudes (Delta1Hcoord=delta1Hcomplex-delta1Hligand) are discussed in relation to the changes of diamagnetic contribution to the relevant 1H shielding constants. The comparison to the literature data for similar complexes containing auxiliary ligands other than chlorides exhibited a large dependence of delta1H parameters on electron density variations and ring-current effects (inductive and anisotropic phenomena). The influence of deviations from planarity, concerning either MN2Cl2 chromophores or azine ring systems, revealed by the known X-ray structures of [Pd(bquin)Cl2] and [Pt(bquin)Cl2], is discussed in respect to 1H NMR spectra. 15N coordination shifts (Delta15Ncoord=delta15Ncomplex-delta15Nligand) of ca. 78-100 ppm (to lower frequency) are attributed mainly to the decrease of the absolute value of paramagnetic contribution in the relevant 15N shielding constants, this phenomenon being noticeably dependent on the type of a platinide metal and coordination sphere geometry. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) replacement but decreased by ca. 15 ppm following trans-->cis transition. Experimental 1H, 13C, 15N NMR chemical shifts are compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in CHCl3 or DMF solution.  相似文献   

11.
In this article we analyze in detail the electronic properties of the D(3h)-symmetric tris(ethylene) complexes of nickel, palladium, and platinum ([M(C(2)H(4))(3)] M=Ni, Pd, Pt). In the case of [Pd(C(2)H(4))(3)] the analysis is based on new experimental IR and Raman spectra for the matrix-isolated molecules and in all cases on the results of quantum-chemical (DFT) calculations. The experimental spectra collected for [Pd(C(2)H(4))(3)] provide evidence for several previously unobserved vibrational modes, including the in-phase and out-of-phase nu(C-C) and delta(CH(2)) modes, and the in-phase nu(M-C) mode. Special consideration is given to possible inter-ligand interactions. The interaction force constant f(CC,CC) between two C(2)H(4) ligands can be directly estimated from the spectra, and its very small value (0.002 N m(-1)) indicates the absence of any significant inter-ligand interaction. An analysis of the topology of the theoretical electron density distribution, rho(r), and the corresponding Laplacian, nabla(2)rho(r), for [Pd(C(2)H(4))(3)] and its lighter and heavier homologues [Ni(C(2)H(4))(3)] and [Pt(C(2)H(4))(3)], respectively, is in full agreement with the conclusions drawn from the experimental results. The combined experimental and quantum-chemical results provide detailed insights in the electronic properties of these prototypical ethylene complexes.  相似文献   

12.
FTIR and single crystal Raman spectra of (CH3)2NH2Al(SO4)2 x 6H2O have been recorded at 300 and 90 K and analysed. The shifting of nu1 mode to higher wavenumber and its appearance in Bg species contributing to the alpha(xz) and alpha(yz) polarizability tensor components indicate the distortion of SO4 tetrahedra. The presence of nu1 and nu2 modes in the IR spectrum and the lifting of degeneracies of nu2, nu3, and nu4 modes are attributed to the lowering of the symmetry of the SO4(2-) ion. Coincidence of the IR and Raman bands for different modes suggest that DMA+ ion is orientationally disordered. One of the H atoms of the NH2 group of the DMA+ ion forms moderate hydrogen bonds with the SO4(2-) anion. Al(H2O)6(3+) ion is also distorted in the crystal. The shifting of the stretching modes to lower wavenumbers and the bending mode to higher wavenumber suggest that H2O molecules form strong hydrogen bonds with SO4(2-) anion. The intensity enhancement and the narrowing of nu1SO4, deltaC2N and Al(H2O)6(3+) modes at 90 K confirm the settling down of the protons in the hydrogen bonds formed with H2O molecules and NH2 groups. This may be one of the reasons for the phase transition observed in the crystal.  相似文献   

13.
The tailoring reaction of the two adjacent nitrile ligands in cis-[PtCl(2)(RCN)(2)] (R = Me, Et, CH(2)Ph, Ph) and [Pt(tmeda)(EtCN)(2)][SO(3)CF(3)](2) (8.(OTf)(2); tmeda = N,N,N',N'-tetramethylethylenediamine) upon their interplay with N,N'-diphenylguanidine (DPG; NH=C(NHPh)(2)), in a 1:2 molar ratio gives the 1,3,5-triazapentadiene complexes [PtCl(2){NHC(R)NHC(R)=NH}] (1-4) and [Pt(tmeda){NHC(Et)NHC(Et)NH}][SO(3)CF(3)](2) (10.(OTf)(2)), respectively. In contrast to the reaction of 8.(OTf)(2) with NH=C(NHPh)(2), interaction of 8.(OTf)(2) with excess gaseous NH(3) leads to formation of the platinum(II) bis(amidine) complex cis-[Pt(tmeda){NH=C(NH(2))Et}(2)][SO(3)CF(3)](2) (9.(OTf)(2)). Treatment of trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) with 2 equiv of NH=C(NHPh)(2) in EtCN (R = Et) and CH(2)Cl(2) (R = CH(2)Ph, Ph) solutions at 20-25 degrees C leads to [PtCl{NH=C(R)NC(NHPh)=NPh}(RCN)] (11-13). When any of the trans-[PtCl(2)(RCN)(2)] (R = Et, CH(2)Ph, Ph) complexes reacts in the corresponding nitrile RCN with 4 equiv of DPG at prolonged reaction time (75 degrees C, 1-2 days), complexes containing two bidentate 1,3,5-triazapentadiene ligands, i.e. [Pt{NH=C(R)NC(NHPh)=NPh}(2)] (14-16), are formed. Complexes 14-16 exhibit strong phosphorescence in the solid state, with quantum yields (peak wavelengths) of 0.39 (530 nm), 0.61 (460 nm), and 0.74 (530 nm), respectively. The formulation of the obtained complexes was supported by satisfactory C, H, and N elemental analyses, in agreement with FAB-MS, ESI-MS, IR, and (1)H and (13)C{(1)H} NMR spectra. The structures of 1, 2, 4, 11, 13, 14, 9.(picrate)(2), and 10.(picrate)(2) were determined by single-crystal X-ray diffraction.  相似文献   

14.
张俊峰  甘欣  傅文甫 《化学学报》2007,65(11):1071-1075
通过亲核取代反应, 在2,2'-联苯二酚氧基环氯磷腈母体N3P3(O2C12H8)2Cl2 (1)和N3P3(O2C12H8)Cl4 (2)上引入2-醛基吡啶与对胺基苯酚形成的席夫碱侧基, 合成了两种新型环磷腈化合物N3P3(O2C12H8)2(p-O-Ph-N=C-Py)2 (3)和N3P3(O2C12H8)(p-O-Ph-N=C-Py)4 (4), 这些化合物是一类能形成配合物的多齿配体. 通过元素分析, IR, 1H NMR, 31P NMR和TOFMS确定其结构, 研究了它们的吸收光谱和荧光光谱. H和Cu离子对其光谱性质的影响研究表明两种化合物的吸收和荧光光谱对H和Cu离子异常敏感, 因而在作为这些阳离子的荧光探针方面具有应用前景.  相似文献   

15.
The high resolution offered by magic-angle spinning (MAS), when compared to the static condition in solid-state NMR of powders, has been used to full advantage in a (14)N MAS NMR study of some ammonium salts: CH(3)NH(3)Cl, (NH(4))(2)(COO)(2) x H(2)O, (CH(3))(3)(C(6)H(5)CH(2))NCl, (CH(3))(3)(C(6)H(5))NI, [(n-C(4)H(9))(4)N](2)Mo(2)O(7), (NH(4))(2)HPO(4), and NH(4)H(2)PO(4). It is shown that the high-quality (14)N MAS NMR spectra, which can be obtained for these salts, allow determination of the (14)N quadrupole coupling parameters, i.e. C(Q) (the quadrupole coupling constant) and eta(Q) (the asymmetry parameter), with very high precision. In particular, it is shown that precise C(Q), eta(Q) parameters can be determined for at least two different (14)N sites in case the individual spinning-sideband (ssb) intensities arise from a single manifold of ssbs, i.e. the ssbs for the two sites cannot be resolved. This feature of (14)N MAS NMR, which is the first demonstration for manifolds of ssb in MAS NMR without the potential information from a central transition, becomes especially useful at the slow spinning frequencies (nu(r) = 1000-1500 Hz) applied to some of the ammonium salts studied here. The detection of the number of sites has been confirmed by the corresponding crystal structures determined from single-crystal X-ray diffraction (XRD), either in this work for the unknown structure of benzyl trimethylammonium chloride or from reports in the literature. The magnitudes of the (14)N quadrupole coupling constants for the ammonium salts studied here are in the range from C(Q) approximately 20 kHz to 1 MHz while the asymmetry parameters span the full range 0 < or = eta(Q) < or = 1. Clearly, the (14)N quadrupole coupling parameters (C(Q), eta(Q)) for ammonium ions appear highly sensitive toward crystal structure and therefore appreciably more informative for the characterization of ammonium salts in comparison to the isotropic (14)N (or (15)N) chemical shifts.  相似文献   

16.
The synthesis and spectroscopic properties of trans-[Cl(16-TMC)Ru[double bond]C[double bond]CHR]PF(6) (16-TMC = 1,5,9,13-tetramethyl-1,5,9,13-tetraazacyclohexadecane, R = C(6)H(4)X-4, X = H (1), Cl (2), Me (3), OMe (4); R = CHPh(2) (5)), trans-[Cl(16-TMC)Ru[double bond]C[double bond]C[double bond]C(C(6)H(4)X-4)(2)]PF(6) (X = H (6), Cl (7), Me (8), OMe (9)), and trans-[Cl(dppm)(2)M[double bond]C[double bond]C[double bond]C(C(6)H(4)X-4)(2)]PF(6) (M = Ru, X = H (10), Cl (11), Me (12); M = Os, X = H (13), Cl (14), Me (15)) are described. The crystal structures of 1, 5, 6, and 8 show that the Ru-C(alpha) and C(alpha)-C(beta) distances of the allenylidene complexes fall between those of the vinylidene and acetylide relatives. Two reversible redox couples are observed by cyclic voltammetry for 6-9, with E(1/2) values ranging from -1.19 to -1.42 and 0.49 to 0.70 V vs Cp(2)Fe(+/0), and they are both 0.2-0.3 and 0.1-0.2 V more reducing than those for 10-12 and 13-15, respectively. The UV-vis spectra of the vinylidene complexes 1-4 are dominated by intense high-energy bands at lambda(max) < or = 310 nm (epsilon(max) > or = 10(4) dm(3) mol(-1) cm(-1)), while weak absorptions at lambda(max) > or = 400 nm (epsilon(max) < or = 10(2) dm(3) mol(-1) cm(-1)) are tentatively assigned to d-d transitions. The resonance Raman spectrum of 5 contains a nominal nu(C[double bond]C) stretch mode of the vinylidene ligand at 1629 cm(-1). The electronic absorption spectra of the allenylidene complexes 6-9 exhibit an intense absorption at lambda(max) = 479-513 nm (epsilon(max) = (2-3) x 10(4) dm(3) mol(-1) cm(-1)). Similar electronic absorption bands have been found for 10-12, but the lowest energy dipole-allowed transition is blue-shifted by 1530-1830 cm(-1) for the Os analogues 13-15. Ab initio calculations have been performed on the ground state of trans-[Cl(NH(3))(4)Ru[double bond]C[double bond]C[double bond]CPh(2)](+) at the MP2 level, and imply that the HOMO is not localized purely on the metal center or allenylidene ligand. The absorption band of 6 at lambda(max) = 479 nm has been probed by resonance Raman spectroscopy. Simulations of the absorption band and the resonance Raman intensities show that the nominal nu(C[double bond]C[double bond]C) stretch mode accounts for ca. 50% of the total vibrational reorganization energy, indicating that this absorption band is strongly coupled to the allenylidene moiety. The excited-state reorganization of the allenylidene ligand is accompanied by rearrangement of the Ru[double bond]C and Ru[bond]N (of 16-TMC) fragments, which supports the existence of bonding interaction between the metal and C[double bond]C[double bond]C unit in the electronic excited state.  相似文献   

17.
Vanadium(III) and vanadium(V) complexes derived from the tris(2-thiolatoethyl)amine ligand [(NS3)3-] and the bis(2-thiolatoethyl)ether ligand [(OS2)2-] have been synthesized with the aim of investigating the potential of these vanadium sites to bind dinitrogen and activate its reduction. Evidence is presented for the transient existence of (V(NS3)(N2)V(NS3), and a series of mononuclear complexes containing hydrazine, hydrazide, imide, ammine, organic cyanide, and isocyanide ligands has been prepared and the chemistry of these complexes investigated. [V(NS3)O] (1) reacts with an excess of N2H4 to give, probably via the intermediates (V(NS3)(NNH2) (2a) and (V(NS3)(N2)V(NS3) (3), the V(III) adduct [V(NS3)(N2H4)] (4). If 1 is treated with 0.5 mol of N2H4, 0.5 mol of N2 is evolved and green, insoluble [(V(NS3))n] (5) results. Compound 4 is converted by disproportionation to [V(NS3)(NH3)] (6), but 4 does not act as a catalyst for disproportionation of N2H4 nor does it act as a catalyst for its reduction by Zn/HOC6H3Pri2-2,6. Compound 1 reacts with NR1(2)NR2(2) (R1 = H or SiMe3; R2(2) = Me2, MePh, or HPh) to give the hydrazide complexes [V(NS3)(NNR2(2)] (R2(2) = Me2, 2b; R2(2) = MePh, 2c; R2(2) = HPh, 2d), which are not protonated by anhydrous HBr nor are they reduced by Zn/HOC6H3Pri2-2,6. Compound 2b can also be prepared by reaction of [V(NNMe2)(dipp)3] (dipp = OC6H3Pri2-2,6) with NS3H3. N2H4 is displaced quantitatively from 4 by anions to give the salts [NR3(4)][V(NS3)X] (X = Cl, R3 = Et, 7a; X = Cl, R3 = Ph, 7b; X = Br, R3 = Et, 7c; X = N3, R3 = Bu(n), 7d; X = N3, R3 = Et, 7e; X = CN, R3 = Et, 7f). Compound 6 loses NH3 thermally to give 5, which can also be prepared from [VCl3(THF)3] and NS3H3/LiBun. Displacement of NH3 from 6 by ligands L gives the adducts [V(NS3)(L)] (L = MeCN, nu CN 2264 cm-1, 8a; L = ButNC, nu NC 2173 cm-1, 8b; L = C6H11NC, nu NC 2173 cm-1, 8c). Reaction of 4 with N3SiMe3 gives [V(NS3)(NSiMe3)] (9), which is converted to [V(NS3)(NH)] (10) by hydrolysis and to [V(NS3)(NCPh3)] (11) by reaction with ClCPh3. Compound 10 is converted into 1 by [NMe4]OH and to [V(NS3)NLi(THF)2] (12) by LiNPri in THF. A further range of imido complexes [V(NS3)(NR4)] (R4 = C6H4Y-4 where Y = H (13a), OMe (13b), Me (13c), Cl (13d), Br (13e), NO2 (13f); R4 = C6H4Y-3, where Y = OMe (13g); Cl (13h); R4 = C6H3Y2-3,4, where Y = Me (13i); Cl (13j); R4 = C6H11 (13k)) has been prepared by reaction of 1 with R4NCO. The precursor complex [V(OS2)O(dipp)] (14) [OS2(2-) = O(CH2CH2S)2(2-)] has been prepared from [VO(OPri)3], Hdipp, and OS2H2. It reacts with NH2NMe2 to give [V(OS2)(NNMe2)(dipp)] (15) and with N3SiMe3 to give [V(OS2)(NSiMe3)(dipp)] (16). A second oxide precursor, formulated as [V(OS2)1.5O] (17), has also been obtained, and it reacts with SiMe3NHNMe2 to give [V(OS2)(NNMe2)(OSiMe3)] (18). The X-ray crystal structures of the complexes 2b, 2c, 4, 6, 7a, 8a, 9, 10, 13d, 14, 15, 16, and 18 have been determined, and the 51V NMR and other spectroscopic parameters of the complexes are discussed in terms of electronic effects.  相似文献   

18.
Microwave rotational spectra of eleven isotopomers of the Ne(3)-NH(3) van der Waals tetramer were measured using a pulsed jet, Balle-Flygare type Fourier transform microwave spectrometer. The transitions measured fall between 4 and 17 GHz and correspond to the ground internal rotor state of the weakly bound complex. The (20)Ne(3)- and (22)Ne(3)-containing species are symmetric top molecules while the mixed (20)Ne(2)(22)Ne- and (20)Ne(22)Ne(2)-isotopomers are asymmetric tops. For each of the deuterium-containing isotopomers, a tunneling splitting was observed due to the inversion of NH(3) within the tetramer. The (14)N nuclear quadrupole hyperfine structures were resolved and included in the spectroscopic fits of the various isotopomers. The rotational constants obtained from the fits were used to estimate the van der Waals bond lengths of the tetramer while the (14)N nuclear quadrupole coupling contants and the observed inversion tunneling splittings provided information about the internal dynamics of the NH(3) moiety. The experimental results were complemented by the construction of three ab initio potential energy surfaces [CCSD(T)] for the Ne(3)-NH(3) complex, each corresponding to a different internal geometry of NH(3) ( 90 degree angle HNH = 106.67 degrees, 90 degree angle HNH = 113.34 degrees, and 90 degree angle HNH = 120.00 degrees ). The topologies of the surfaces are related to the structures and dynamics of the tetramer. Extensive comparisons are made between the results obtained for the Ne(3)-NH(3) tetramer in this work and previous experimental and ab initio studies of related Rg(n)-NH(3) van der Waals clusters.  相似文献   

19.
Complexes [Ir(Cp*)Cl(n)(NH2Me)(3-n)]X(m) (n = 2, m = 0 (1), n = 1, m = 1, X = Cl (2a), n = 0, m = 2, X = OTf (3)) are obtained by reacting [Ir(Cp*)Cl(mu-Cl)]2 with MeNH2 (1:2 or 1:8) or with [Ag(NH2Me)2]OTf (1:4), respectively. Complex 2b (n = 1, m = 1, X = ClO 4) is obtained from 2a and NaClO4 x H2O. The reaction of 3 with MeC(O)Ph at 80 degrees C gives [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(NH2Me)]OTf (4), which in turn reacts with RNC to give [Ir(Cp*){C,N-C6H4{C(Me)=N(Me)}-2}(CNR)]OTf (R = (t)Bu (5), Xy (6)). [Ir(mu-Cl)(COD)]2 reacts with [Ag{N(R)=CMe2}2]X (1:2) to give [Ir{N(R)=CMe2}2(COD)]X (R = H, X = ClO4 (7); R = Me, X = OTf (8)). Complexes [Ir(CO)2(NH=CMe2)2]ClO4 (9) and [IrCl{N(R)=CMe2}(COD)] (R = H (10), Me (11)) are obtained from the appropriate [Ir{N(R)=CMe2}2(COD)]X and CO or Me4NCl, respectively. [Ir(Cp*)Cl(mu-Cl)]2 reacts with [Au(NH=CMe2)(PPh3)]ClO4 (1:2) to give [Ir(Cp*)(mu-Cl)(NH=CMe2)]2(ClO4)2 (12) which in turn reacts with PPh 3 or Me4NCl (1:2) to give [Ir(Cp*)Cl(NH=CMe2)(PPh3)]ClO4 (13) or [Ir(Cp*)Cl2(NH=CMe2)] (14), respectively. Complex 14 hydrolyzes in a CH2Cl2/Et2O solution to give [Ir(Cp*)Cl2(NH3)] (15). The reaction of [Ir(Cp*)Cl(mu-Cl)]2 with [Ag(NH=CMe2)2]ClO4 (1:4) gives [Ir(Cp*)(NH=CMe2)3](ClO4)2 (16a), which reacts with PPNCl (PPN = Ph3=P=N=PPh3) under different reaction conditions to give [Ir(Cp*)(NH=CMe2)3]XY (X = Cl, Y = ClO4 (16b); X = Y = Cl (16c)). Equimolar amounts of 14 and 16a react to give [Ir(Cp*)Cl(NH=CMe2)2]ClO4 (17), which in turn reacts with PPNCl to give [Ir(Cp*)Cl(H-imam)]Cl (R-imam = N,N'-N(R)=C(Me)CH2C(Me)2NHR (18a)]. Complexes [Ir(Cp*)Cl(R-imam)]ClO4 (R = H (18b), Me (19)) are obtained from 18a and AgClO4 or by refluxing 2b in acetone for 7 h, respectively. They react with AgClO4 and the appropriate neutral ligand or with [Ag(NH=CMe2)2]ClO4 to give [Ir(Cp*)(R-imam)L](ClO4)2 (R = H, L = (t)BuNC (20), XyNC (21); R = Me, L = MeCN (22)) or [Ir(Cp*)(H-imam)(NH=CMe2)](ClO4)2 (23a), respectively. The later reacts with PPNCl to give [Ir(Cp*)(H-imam)(NH=CMe2)]Cl(ClO4) (23b). The reaction of 22 with XyNC gives [Ir(Cp*)(Me-imam)(CNXy)](ClO4)2 (24). The structures of complexes 15, 16c and 18b have been solved by X-ray diffraction methods.  相似文献   

20.
MeNH(2) reacts with silver salts AgX (2:1) to give [Ag(NH(2)Me)(2)]X [X = TfO = CF(3)SO(3) (1.TfO) and ClO(4) (1.ClO(4))]. Neutral mono(amino) Rh(III) complexes [Rh(Cp*)Cl(2)(NH(2)R)] [R = Me (2a), To = C(6)H(4)Me-4 (2b)] have been prepared by reacting [Rh(Cp*)Cl(mu-Cl)](2) with RNH(2) (1:2). The following cationic methyl amino complexes have also been prepared: [Rh(Cp*)Cl(NH(2)Me)(PPh(3))]TfO (3.TfO), from [Rh(Cp*)Cl(2)(PPh(3))] and 1.TfO (1:1); [Rh(Cp*)Cl(NH(2)R)2]X, where R = Me, X = Cl, (4a.Cl), from [Rh(Cp*)Cl(mu-Cl)]2 and MeNH2 (1:4), or R = Me, X = ClO4 (4a.ClO4), from 4a.Cl and NaClO4 (1:4.8), or R = To, X = TfO (4b.TfO), from [Rh(Cp*)Cl(mu-Cl)](2), ToNH(2) and TlTfO (1:4:2); [Rh(Cp*)(NH(2)Me)(tBubpy)](TfO)(2) (tBubpy = 4,4'-di-tert-butyl-2,2'-bipyridine, 5.TfO), from 2a, TlTfO and tBubpy (1:2:1); [Rh(Cp*)(NH(2)Me)(3)](TfO)2 (6.TfO) from [Rh(Cp*)Cl(mu-Cl)](2) and 1.TfO (1:4). 2-6 constitute the first family of methyl amino complexes of rhodium. 1 and 4a.ClO(4) react with acetone to give, respectively, the methyl imino complexes [Ag{N(Me)=CMe(2)}()]X [X = TfO (7.TfO), ClO(4) (7.ClO(4))], and [Rh(Cp*)Cl(Me-imam)]ClO(4) [8.ClO(4), Me-imam = N,N'-N(Me)=C(Me)CH(2)C(Me)(2)NHMe]. 7.X (X = TfO, ClO(4)) are new members of the small family of methyl acetimino complexes of any metal whereas 8.ClO4 results after a double acetone condensation to give the corresponding bis(methyl acetimino) complex and an aldol-like condensation of the two imino ligands. The acetimino complex [Ag(NH=CMe(2))(2)]ClO(4) reacts with [Rh(Cp*)Cl(imam)]ClO(4) [1:1, imam = N,N'-NH=C(Me)CH(2)C(Me)(2)NH(2)] to give [Rh(Cp*)(imam)(NH=CMe(2))](ClO(4))(2) (9a.ClO(4)). 8.ClO(4) reacts with AgClO(4) (1:1) in MeCN to give [Rh(Cp*)(Me-imam)(NCMe)](ClO(4))2 (9b.ClO(4)), which in turn reacts with XyNC (Xy = C(6)H(3)Me(2)-2,6) or with MeNH(2) (1:1) to give [Rh(Cp*)(Me-imam)L](ClO(4))(2) [L = XyNC (9c.ClO(4)), MeNH(2) (9d.ClO(4))]. 6.TfO reacts with acetophenone to give [Rh(Cp*){C,N-C(6)H(4)C(Me)=N(Me)-2}(NH(2)Me)]TfO (10a.TfO), the first complex resulting from such a condensation and cyclometalation reaction. In turn, 10a.TfO reacts with isocyanides RNC (1:1) at room temperature to give [Rh(Cp*){C,N-C(6)H(4)C(Me)=NMe-2}(CNR)]TfO [R = tBu (10b.TfO), Xy (10c.TfO)], or 1:12 at 60 degrees C to give [Rh(Cp*){C,N-C(=NXy)C(6)H(4)C(Me)=N(Me)-2}(CNXy)]TfO (11.TfO). The crystal structures of 9a.ClO(4).acetone-d6, 9c.ClO(4), and 10a.TfO have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号