首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Arylmercury compounds of the type Ar2Hg and ArHgX (X = Cl, OAc) have been synthesized and characterized by 1H and 13C NMR spectroscopy; the Ar group was either 2-Me2NCH2C6H4 or (S)-2-Me2NCH(Me)C6H4, both of which contain N-donor ligands. The observation of anisochronous NMe resonances in (S)-2-Me2NCH(Me)C6H4HgX (X = Cl, OAc) at low temperature indicates that in solution the mercury centre is three-coordinate as a result of stable intramolecular HgN coordination  相似文献   

2.
A simultaneous stereoselective 2-O-deacetylation and 4-amination reaction of peracetylated Neu5Ac 1 has been established with cyclic secondary amines, such as 1-N-Boc-piperazine. Four C2-symmetric and two asymmetric sialic acid dimers with (4→4)-piperazine derivatives linked were synthesized. They may serve as precursors of unnatural polysialic acids.  相似文献   

3.
Treatment of [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(COD) (1) with phosphites, phosphines, amines or N-heterocyclic carbene in THF afforded the COD displacement complexes [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[P(OEt)3]2 (2), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[PPh2(OEt)]2 (3), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[NH2CH2CH2Pri]2 (4), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(NH2Prn)2 (5), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru (η2-NH2CH2CH2NH2) (6), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[η2-NH(CH3)CH2CH2NH(CH3)] (7) or [η5:σ-Me2C(C5H4)(C2B10H10)]Ru[NHC]2 (8, NHC = 1,3,4,5-tetramethylimidazol-2-yilidene), respectively. Ruthenium-amine complexes were much more labile than 1. Upon exposure to moisture, 5 was converted into [{η5:σ-Me2C(C5H4)(C2B10H10)}Ru(μ-H2O)]2 (9). Reactions of 5 with PR3 (R = PPh3, Cy), TMEDA (TMEDA = N,N,N′,N′-tetramethylethylenediamine) and CH3CN afforded the corresponding amine replacement products[η5:σ-Me2C(C5H4)(C2B10H10)]Ru(NH2Prn)(PPh3) (10), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(NH2Prn)(PCy3) (11), [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(TMEDA) (12) and [η5:σ-Me2C(C5H4)(C2B10H10)]Ru(NCCH3)2 (13). These results indicated that the steric factor dominated these substitution reactions. The electrochemical studies showed that the electron richness of the Ru atom decreased in the order L2Ru(NHC)2 > L2Ru(amine)2 > L2Ru(NCMe)2 > L2Ru(P)2. All of these complexes were fully characterized by various spectroscopic techniques and elemental analyses. The molecular structures of 2, 3, 5-10, 12 and 13 were further confirmed by single-crystal X-ray analyses.  相似文献   

4.
Reactions of fluoro-and chloromesitylene π-complexes [(η6-1-Hlg-2,4,6-Me3C6H2)(η5-C5EtMe4)Rh]-(BF4)2 (Hlg = F, Cl) with diethyl malonate anion in THF or acetone-d 6 at 20°C initially (within the first 5–30 min) involve nucleophile addition at unsubstituted carbon atom in the arene ligand with formation of π-cyclohexadienyl complexes {[η5-1-(EtOCO)2CH-1-H-3-Hlg-2,4,6-Me3C6H2](η5-C5EtMe4)Rh}(BF4). The subsequent replacement of the halogen atom yields {[η6-1-(EtOCO)2CH-2,4,6-Me3C6H2](η5-C5EtMe4)Rh}(BF4)2, where the arene ligand is readily withdrawn from π-coordination by the action of chloride ion or the solvent. Dimethyl mesitylmalonate was isolated in 76% yield. Likewise, the reactions with anions derived from malononitrile and ethyl cyanoacetate gave 25–38% of the corresponding derivatives 1-R-2,4,6-Me3C6H2 where R = (NC)2CH or EtOCO(NC)CH.  相似文献   

5.
Reaction of Me5C5Li and Ni(CO)4 gave [(n5-Me5C5)Ni(CO)]2 (I) in 40 % yield. Reaction of I with iodine followed by addition of a tertiary phosphine or reaction of (PPh3)2NiX2 with Me5C5Li or Me5C5SnBu3 gave (n5-Me5C5)Ni(L)X (II) (L = tertiary phosphine, X = halogen). Treatment of II with RLi (R = Me, PhCC) afforded (n5-Me5C5)Ni(L)R (III). The spectroscopic properties and the reactivities of n5-pentamethylcyclopentadienylnickel complexes indicate that the n5-Me5C5 ligand is more electron-donating and a sterically more bulky than the n5-C5H5 ligand.  相似文献   

6.
Substitution of allylic picolinoates with copper reagents derived from sp2-carbon-lithiums and CuBr·Me2S was established to furnish anti SN2′ products with almost perfect regioselectivity and chirality transfer. The preparations of organolithiums such as lithium-halogen exchange and ortho lithiation were coupled to the substitution to install various sp2-carbon groups, which include Ph, 2,6-Me2C6H3, 4-Me-2,6-(MOMO)C6H2, and cis and trans 1-heptenyl groups.  相似文献   

7.
Reaction of [η 5:σ-Me2C(C5H4)(C2B10H10)]Ru(NCCH3)2 (1) with R1C≡CR1(R1 = Et, Ph) in toluene at 80°C yielded organoruthenium cyclobutadiene complexes [η 5:σ-Me2C(C5H4)(C2B10H10)]Ru(η 4-C4R 4 1 ) in >80% yield. Treatment of 1 with diynes R2C≡C(CH2)3C≡CR2 (R2 = Me, Et) in toluene at room temperature yielded ruthenacyclopentatrienes [η 5:σ-Me2C (C5H4)(C2B10H10)]Ru[=C2(R2)2C2(CH2)3] in >85% yield. These new complexes were fully characterized by various spectroscopic techniques, elemental analyses and single-crystal X-ray diffraction studies. The possible reaction mechanism was proposed.  相似文献   

8.
Compound [NbCp′Me4] (Cp′ = η5-C5H4SiMe3, 1) reacted with several ROH compounds (R = tBu, SiiPr3, 2,6-Me2C6H3) to give the derivatives [NbCp′Me3(OR)] (R = tBu 2a, SiiPr32b, 2,6-Me2C6H32c). The diaryloxo tantalum compound [TaCpMe2(OR)2] (Cp = η5-C5Me5, R = 2,6-Me2C6H33) was obtained by reaction of [TaCpCl2Me2] with 2 equiv of LiOR (R = 2,6-Me2C6H3). Abstraction of one methyl group from these neutral compounds 1-3 with the Lewis acids E(C6F5)3 (E = B, Al) gave the ionic derivatives [NbCp′Me2X][MeE(C6F5)3] (X = Me 4-E. X = OR; R = SiiPr35b-E, 2,6-Me2C6H35c-E. E = B, Al) and [TaCpMe(OR)2][MeE(C6F5)3] (R = 2,6-Me2C6H36-E; E = B, Al). Polymerization of MMA with the aryloxoniobium compound 2c and Al(C6F5)3 gave syndiotactic PMMA in a low yield, whereas the tetramethylniobium compound 1 and the diaryloxotantalum derivative 3 were inactive.  相似文献   

9.
Each of the compounds [MCl(Pr3)2(ArylNSO)] (M = RhI, IrI; R = i-Pr, Cy: Aryl = C6H5, 4-MeC6H4, 4-ClC6H4, 2,4,6-Me3C6H2 appears to exist as two isomers both in the solid state and in solution. The molecular and single crystal structure of one of the isomers of [RhCl(P-i-Pr)3)2(4-Me6H4NSO)] shows that the N-sulfinylaniline ligand is in the cis-configuration and coordinated to the rhodium atom via the sulfur-atom. The ligand lies in a plane which includes the rhodium atom and is in agreement with the Rh-S distance of 2.10 Å. IR results of the compounds (solid and solutions), 21P NMR data and 15N NMR of a 15N labelled compound, which yielded a 103Rh15N coupling constant of 15.5 Hz, show that in the second isomer the N-sulfinylaniline ligand is probably bonded to the metal atom via the π-NS bond.The ratio of the metal-π-NS bonded isomer and the metal-S bonded isomer decreases in the order Aryl = 4-ClC6H4 > C6H5 > 4-MeC6H4; R = i-Pr > Cy and M = Rh > Ir. The interconversion of the two isomers is intramolecular and becomes observable on the 31P NMR time scale at about 40° C for M = Rh.In the case of [Ir(P-i-Pr3)2(4-MeC6H4NSO)], cyclometallation of the sul- finylaniline is observed via the ortho-carbon atom, whereas cyclometallation via P-i-Pr3 is observed when the ortho-positions are blocked by methyl groups, e.g. when L = 2,4,6-Me3C6H2NSO.  相似文献   

10.
The synthesis and structural characterization by 1H NMR and 197Au Mössbauer spectroscopy as well as by chiral labelling of the built-in ligands of three different types of arylgold(I) compounds is described.197Au Mössbauer data revealed that the benzyl- and arylgold(I) triphenylphosphine complexes which bear potential coordinating substituents at an ortho position still contain linearly coordinated AuI with 2c-2e gold(I)carbon bonds. The observation of isochronous NME resonances in (S)-2-Me2NCH(Me)C6H4AuPPh3 confirms that no additional intramolecular AuN coordination occurs in solution. Preliminary results of an X-ray diffraction study of 2,6-(MeO)2C6H3AuPPh3 are reported (R = 0.040, PAuC1 angle 172.6°. Unsymmetrical AuC1C2 and AuC1C6 angles of 126.4 and 117.4°, respectively).Pure, uncomplexed arylgold(I) compounds have been isolated from the reaction of diarylgoldlithium compounds (arylaurates) with trimethyltin bromide. (S)-2-Me2NCHMeC6H4Au has a dimeric structure which most likely consists of two monomeric units associated by intermolecular AuN coordination thus forming a ten-membered chelate ring. The structure of insoluble 2-Me2NCH2C6H4Au and 2-Me2NC6H4Au are less clear. The former compound probably has a structure similar to (S)-2-Me2NCHMeC6H4Au (IS/QS values for two-coordinate AuI centers). However, the strongly deviating IS and QS values of 2-Me2NC6H4Au indicate that a polynuclear structure for this compound similar to that proposed for 2-Me2NC6H4Cu cannot be excluded (a polymeric structure containing 2-Me2NC6H4 groups which span three Au atoms by 3c-2e Au2C bonds and AuN coordination).The mixed Au/Cu cluster (2-Me2NCH2C6H4)4Au2Cu2 is accessible via the 12 reaction of (2-Me2NCH2C6H4)4Au2Li2 with CuI. Molecular weight and 1H NMR studies point to a tetranuclear structure in solution, while mass spectrometry shows fragment ions with m/e corresponding to (2-Me2NCH2C6H4)3Au2Cu2+, (2-Me2NCH2C6H4)3Cu2Au+, (2-Me2NCH2C6H4)2CuAu2+ and of (2-Me2NCH2C6H4)2Au+.  相似文献   

11.
o-Phenylene-bridged trimethylcyclopentadienyl/amido titanium complexes [(η5-2,3,5-Me3C5H)C6H4NR-κN]TiCl2 (18, R = CH3; 19, R = CH2CH3; 20, R = CH2C(CH3)3; 21, R = CH2(C6H11)) and zirconium complexes {[(η5-2,3,5-Me3C5H)C6H4NR-κN]ZrCl-μCl}2 (22, R = CH3; 23, R = CH2CH3; 24, R = CH2C(CH3)3; 25, R = CH2(C6H11); 26, R = C6H11; 27, R = CH(CH2CH3)2) are prepared via a key step of the Suzuki-coupling reaction between 2-dihydroxyboryl-3-methyl-2-cyclopenten-1-one (2) and the corresponding bromoaniline compounds. The molecular structures of titanium complexes 18 and 19 and dinuclear zirconium complexes 24 and 26 were confirmed by X-ray crystallography. The Cp(centroid)-Ti-N and Cp(centroid)-Zr-N angles are smaller, respectively, than those observed for the Me2Si-bridged complex [Me2Si(η5-Me4C5)(NtBu)]TiCl2 and its Zr-analogue, indicating that the o-phenylene-bridged complexes are more constrained than the Me2Si-bridged complex. Titanium complex 19 exhibits comparable activity and comonomer incorporation to the CGC ([Me2Si(η5-Me4C5)(NtBu)]TiCl2) in ethylene/1-octene copolymerization. Complex 19 produces a higher molecular-weight polymer than CGC.  相似文献   

12.
A study has been made of reactions involving organometallic compounds containing ortho-Me2NCH2 substituted aryl ligands. The single step syntheses of the new compounds [(2-Me2NCH2C6H4)2TlCl], [ [{(S)-2-Me2NCH(Me)C6H4}2TlCl], [{(S)-2-Me2NCH(Me)C6H4}TlCl2], [{2,6-(Me2NCH2)2C6H3}TlClBr] and [{2,6-(Me2NCH2)2C6H3}HgCl] are described. Stable internal NTl coordination at low temperatures has been established for the C-chiral thallium compounds. Reactions of the other Tl and Hg compounds and of [(2-Me2NCH2C6H4)2Hg] with Pd(O2CMe)2, and also of the reverse reaction of cis-[(2-Me2NCH2C6H4)2Pd] with Hg(O2CR)2 or Tl(O2CR)3, gave transmetallation of one organo ligand and led to a single mono-organopalladium compound and corresponding by-products. Reaction of cis-[(2-Me2NCH2C6H4)2Pd] with Pd(O2CR)2 gave the dimeric compound [{(2-Me2NCH2C6H4)Pd(O2CR)}2]. cis-[(2-Me2NCH2C6H4)2Pt] did not react with Pd(O2CMe)2, while reaction of trans-[(2-Me2NCH2C6H4)2Pt] or cis-[(2-Me2NC6H4CH2)2Pt] with Pd(O2CMe)2 resulted in decomposition. Upon heating, trans-[(2-Me2NCH2C6H4)2Pt] was isomerized to cis-isomer. A redox reaction between [(2-Me2NCH2C6H4)2Hg] and [Pt(COD)2] (COD  1,5-cyclo-octadiene) and [Pd2(DBA)3] (DBA  dibenzylideneacetone) gave the cis-isomers of [(2-Me2NCH2C6H4)2M] (M  Pd, Pt).The results are discussed in terms of influence of internal coordination of the CH2NMe2 group. It is concluded that although internal coordination of the CH2NMe2 ligand can stabilize metal—carbon bonds it cannot prevent cleavage of such bonds by electrophiles. In this respect, there is no difference in the behaviour of Hg(O2CR)2 and Tl(O2CR)3. The reactions are influenced by the metal—nitrogen bond strength, which follows the order PtN > PdN > HgN, TlN. The reactivity of Pt compounds is greatly influenced by their structure and type of ligand. It is proposed that cleavege of PdC bonds occurs mainly by a mechanism involving direct electrophilic attack at the carbon centre.  相似文献   

13.
The 13C chemical shifts and the 13C−1H coupling constants of quinoline (1-(X-quinolyl)ethyl acetate derivatives (where X=−CH(OAc)CH3 substituted at positions 2,4,5–8) are reported. Substituent chemical shift (SCS) effects for the ethyl acetate group are additive at all positions. A substantial upfield shift of 4.5 and 4.8 ppm was observed at C-4 and C-5, arising from the peri interaction of 5- and 4-ethyl acetate substituents respectively. A vicinal (peri) 3J CCCH coupling constant of approximately 5 Hz is observed between both C5−H4 and C4−H5. Carbon-13 relaxation times (T1) and nuclear Overhauser enhancements (η) have been measured for quinoline and its derivatives, and the contributions of dipolar, T1DD, and spin rotation, T1SR, relaxation have been determined. Intramolecular dipole-dipole interactions are found to provide by far the most important spin-lattice relaxation mechanism whenever protons are bound directly to the carbons under investigation. Non-protonated ring carbons are relaxed by both DD and SR mechanisms. Anisotropic motion has an easily observable effect on the DD contribution to T1, and can form the basis for spectral assignments, as in 1-phenylethyl acetate. Long-range 13C−1H coupling constants were observed both between ring carbons and between ring carbons with ring side-chain hydrogens. These results have been used for the structure determination of the title compounds.  相似文献   

14.
A number of 4- and 5-R-sulfanylfuran-2(5H)-one derivatives were synthesized, and their oxidation with various reagents was studied. The corresponding sulfones were obtained using hydrogen peroxide in acetic acid. 4-R-sulfanyl derivatives were selectively oxidized to sulfoxides with m-chloroperoxybenzoic acid. The molecular and crystal structures of some new sulfones and sulfoxides were determined by X-ray analysis.  相似文献   

15.
1,1′-Disubstituted Titanocene Dithiolene Chelates of Type (η5-Me3EC5H4)2Ti(S2C2R2) (E = C, Si, Ge) Reaction of the titanocene dichlorides (η5-Me3EC5H4)2TiCl2 (E = C, 1a ; E = Si, 1b ; E = Ge, 1c ) with the 1,2-dithiolates (NaS)2C2H2, (NaS)2C2(CN)2 or (LiS)2C6H3Me-4 gave the new titanocene dithiolene chelates (η5-Me3EC5H4)2Ti(S2C2H2) ( 2a–c ), (η5-Me3EC5H4)2Ti[S2C2(CN)2] ( 3a–c ) and (η5-Me3EC5H4)2Ti(S2C6H3Me-4) ( 4a–c ). These have been characterized by 1H NMR, IR, and mass spectroscopy, and have been compared with the unsubstituted η5-C5H5 analogues 2d, 3d and 4d . Activation energies for the chelate ring inversion in solution of 2a–c, 3a–d and 4a–c have been estimated by temperature-dependent 1H NMR spectroscopy.  相似文献   

16.
Using 1H- and 13C-NMR spectroscopies, cationic intermediates formed by activation of L2ZrCl2 with methylaluminoxane (MAO) in toluene were monitored at Al/Zr ratios from 50 to 1000 (L2 are various cyclopentadienyl (Cp), indenyl (Ind) and fluorenyl (Flu) ligands). The following catalysts were studied: (Cp-R)2ZrCl2 (R=Me, 1,2-Me2, 1,2,3-Me3, 1,2,4-Me3, Me4, Me5, n-Bu, t-Bu), rac-ethanediyl(Ind)2ZrCl2, rac-Me2Si(Ind)2ZrCl2, rac-Me2Si(1-Ind-2-Me)2ZrCl2, rac-ethanediyl(1-Ind-4,5,6,7-H4)2ZrCl2, (Ind-2-Me)2ZrCl2, Me2C(Cp)(Flu)ZrCl2, Me2C(Cp-3-Me)(Flu)ZrCl2 and Me2Si(Flu)2ZrCl2. Correlations between spectroscopic and ethene polymerization data for catalysts (Cp-R)2ZrCl2/MAO (R=H, Me, 1,2-Me2, 1,2,3-Me3, 1,2,4-Me3, Me4, Me5, n-Bu, t-Bu) and rac-Me2Si(Ind)2ZrCl2 were established. The catalysts (Cp-R)2ZrCl2/AlMe3/CPh3+B(C6F5)4 (R=Me, 1,2-Me2, 1,2,3-Me3, 1,2,4-Me3, Me4, n-Bu, t-Bu) were also studied for comparison of spectroscopic and polymerization data with MAO-based systems. Complexes of type (Cp-R)2ZrMe+←Me-Al≡MAO (IV) with different [Me-MAO] counteranions have been identified in the (Cp-R)2ZrCl2/MAO (R=n-Bu, t-Bu) systems at low Al/Zr ratios (50-200). At Al/Zr ratios of 500-1000, the complex [L2Zr(μ-Me)2AlMe2]+[Me-MAO] (III) dominates in all MAO-based reaction systems studied. Ethene polymerization activity strongly depends on the Al/Zr ratio (Al/Zr=200-1000) for the systems (Cp-R)2ZrCl2/MAO (R=H, Me, n-Bu, t-Bu), while it is virtually constant in the same range of Al/Zr ratios for the catalytic systems (Cp-R)2ZrCl2/MAO (R=1,2-Me2, 1,2,3-Me3, 1,2,4-Me3, Me4) and rac-Me2Si(Ind)2ZrCl2/MAO. The data obtained are interpreted on assumption that complex III is the main precursor of the active centers of polymerization in MAO-based systems.  相似文献   

17.
The compound (η2-Me4C5H)Me2Si(η5-Me4C5)Ge+GeCl3 is the first example of alkene coordination at a main group element substantiated by X-ray crystallography. The complex was prepared from monometalated dimethylsilanediylbis(2,3,4,5-tetramethylcyclopenta-2,4-diene) and germanium dichloride-dioxane. The intramolecular interaction between the diene and the central germanium atom suggests that main group elements can coordinate with ordinary unsaturated hydrocarbons.  相似文献   

18.
2-Oxo-1,3,2-dioxathiane and all methyl- and several alkyl-substituted 2-oxo-1,3,2-dioxathianes were prepared for a 1H NMR conformational study. The conformational energy of the axial SO group in CCl4, - ΔGθSO = 14.8±0.3kJ mol?1, was determined by chemical equilibration of the epimeric cis-4,6-dimethyl derivatives and it was found to decrease with the increasing solvent polarity. The conformational equilibria of alkyl-substituted derivatives were solved and the proportions of the conformers estimated using 1H NMR chemical shifts, vicinal coupling constants and in three cases also dipole moments. The configurational interactions in the C4C5C6 moiety are close to the corresponding values of 1,3-dioxanes.  相似文献   

19.
The sterically demanding pyridines 2,6-Ar2C6H3N [Ar = 2,4,6-Me3C6H2 (1) or 2,4,6-Pri3C6H2 (2)] were prepared by a palladium catalysed Kumada C–C coupling reaction in high yield. Pyridine 1 reacted with one equivalent of GaCl3 to afford the tetra-chloro gallate–pyridinium ion pair complex [GaCl4][2,6-(2,4,6-Me3C6H2)2C6H3NH]+ (3). Contrastingly, pyridine 2 reacted with one equivalent of GaCl3 to afford the anticipated donor-acceptor complex [GaCl3{2,6-(2,4,6-Pri3C6H2)2C6H3N}] (4). Complexes 14 have been characterised variously by single crystal X-ray diffraction, NMR, CHN, and mass spectrometry.  相似文献   

20.
Early transition metal complexes employing a diamido N-heterocyclic carbene (NHC) ligand set (denoted [NCN]) render the centrally disposed NHC moiety stable to dissociation. Aminolysis reactions with the mesityl-substituted ligand precursor (Mes[NCN]H2) and M(NMe2)4 (M = Zr, Hf) provide bis(amido)-NHC-metal complexes that can be further converted to chloro and alkyl derivatives. Activation of Mes[NCN]M(CH3)2 with [Ph3C][B(C6F5)4] yields {Mes[NCN]MCH3}{B(C6F5)4}, which is surprisingly inactive for the polymerization of 1-hexene. The zirconium cation did, however, show moderate ability to catalytically polymerize ethylene. The hafnium dialkyls are thermally stable with the exception of the diethyl complex, Mes[NCN]Hf(CH2CH3)2, which undergoes β-hydrogen transfer and subsequent C–H bond activation with an ortho-methyl substituent on the mesityl group. The hafnium dialkyl complexes also insert carbon monoxide and substituted isocyanides to yield η2-acyls and η2-iminoacyls, respectively. In some circumstances, further C–C bond coupling occurs to yield enediolates and eneamidolate metallocycles. The molecular structures of Mes[NCN]Hf(CH2CHMe2)2, Mes[NCN]Hf(η2-(2,6-Me2C6H3NCCH3)(CH3), Mes[NCN]Hf(η2-(2,6-Me2C6H3NCCH3)2, Mes[NCN]Hf(OC(CH3)C(CH3)NXy), and [Mes[NCN]Hf(OC(iBu)C(iBu)O)]2 are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号