首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper aims to solve a problem faced by a company competing in the snacks market in Turkey. In line with the growth in this market, the company needs to make important decisions over the next few years about the timing and location of a new plant, its initial capacity, the timing and amount of additional capacity to be installed at the new and existing plants, the assignment of demand points to plants and the amount of raw materials to be shipped from suppliers to the plants in each period. The objective is to minimize the total cost of various components. The problem is formulated as a multi-period supply chain network design model with multi products. The resulting mixed-integer linear programming model is solved by the commercial solver CPLEX. This model enables us to carry out all analyses requested by the company in an efficient way. After this deterministic model is solved on the basis of a 9% annual increase in demand, it is extended to a minimax regret model to deal with uncertainty in demand quantities. The results suggest that opening the new plant in the city of İzmir is indeed a robust solution that is unaffected in different scenarios that are based on three distinct demand increase rates. Even though the location of the new plant remains unchanged with respect to scenarios, the optimal robust solution differs from the optimal solution of each scenario in terms of the capacity expansion decisions. After all obtained results had been communicated to the company managers and executives, the new plant construction was started in 2016 very close to the city that the mathematical model had determined. The new plant is expected to start operating in 2018.  相似文献   

2.
We consider in this paper that the reserve of an insurance company follows the classical model, in which the aggregate claim amount follows a compound Poisson process. Our goal is to minimize the ruin probability of the company assuming that the management can invest dynamically part of the reserve in an asset that has a positive fixed return. However, due to transaction costs, the sale price of the asset at the time when the company needs cash to cover claims is lower than the original price. This is a singular two-dimensional stochastic control problem which cannot be reduced to a one-dimensional problem. The associated Hamilton–Jacobi–Bellman (HJB) equation is a variational inequality involving a first order integro-differential operator and a gradient constraint. We characterize the optimal value function as the unique viscosity solution of the associated HJB equation. For exponential claim distributions, we show that the optimal value function is induced by a two-region stationary strategy (“action” and “inaction” regions) and we find an implicit formula for the free boundary between these two regions. We also study the optimal strategy for small and large initial capital and show some numerical examples.  相似文献   

3.
杨鹏  林祥 《经济数学》2011,28(2):29-33
研究了保险公司的最优投资和再保险问题.保险公司的盈余通过跳-扩散风险模型来模拟,可以把盈余的一部分投资到金融市场,金融市场由一个无风险资产和n个风险资产组成,并且保险公司还可以购买比例再保险;在买卖风险资产时,考虑了交易费用.通过随机控制的理论,获得了最优策略和值函数的显示解.  相似文献   

4.
We consider a mathematical model of decision making by a company attempting to win a market share. We assume that the company releases its products to the market under the competitive conditions that another company is making similar products. Both companies can vary the kinds of their products on the market as well as the prices in accordance with consumer preferences. Each company aims to maximize its profit. A mathematical statement of the decision-making problem for the market players is a bilevel mathematical programming problem that reduces to a competitive facility location problem. As regards the latter, we propose a method for finding an upper bound for the optimal value of the objective function and an algorithm for constructing an approximate solution. The algorithm amounts to local ascent search in a neighborhood of a particular form, which starts with an initial approximate solution obtained simultaneously with an upper bound. We give a computational example of the problem under study which demonstrates the output of the algorithm.  相似文献   

5.
On reinsurance and investment for large insurance portfolios   总被引:1,自引:0,他引:1  
We consider a problem of optimal reinsurance and investment for an insurance company whose surplus is governed by a linear diffusion. The company’s risk (and simultaneously its potential profit) is reduced through reinsurance, while in addition the company invests its surplus in a financial market. Our main goal is to find an optimal reinsurance-investment policy which minimizes the probability of ruin. More specifically, in this paper we consider the case of proportional reinsurance, and investment in a Black-Scholes market with one risk-free asset (bond, or bank account) and one risky asset (stock). We apply stochastic control theory to solve this problem. It transpires that the qualitative nature of the solution depends significantly on the interplay between the exogenous parameters and the constraints that we impose on the investment, such as the presence or absence of shortselling and/or borrowing. In each case we solve the corresponding Hamilton-Jacobi-Bellman equation and find a closed-form expression for the minimal ruin probability as well as the optimal reinsurance-investment policy.  相似文献   

6.
保险公司实业项目投资策略研究   总被引:1,自引:0,他引:1  
考虑保险公司实业项目投资问题. 假定1)保险公司可以选择在某一时刻投资一实业项目(Real investment), 该项投资可以为保险公司带来稳定的资金收入而不影响其风险;2)保险公司可以将盈余资金投资于证券市场, 该市场包含一风险资产.目标是通过最小化破产概率来确定保险公司实业项目投资时间和风险资产的投资金额.运用混合随机控制-最优停时方法,得到值函数的半显式解, 进而得到保险公司的最佳投资策略: 以固定金额投资证券市场; 当保险公司盈余高于一定额度(称为投资门槛)时进行项目投资, 并降低风险资产投资金额.最后采用数值算例分析了不同市场环境下投资门槛与投资金额, 投资收益率之间的关系. 结果表明:1)项目投资所需金额越少、收益率越高, 则项目投资的门槛越低;2)市场环境较好时(牛市)项目的投资门槛提高, 保险公司应较多的投资于证券市场; 反之, 当市场环境较差时(熊市)投资门槛降低,保险公司倾向于实业项目投资.  相似文献   

7.
站在保险公司管理者的角度, 考虑存在不动产项目投资机会时保险公司的再保险--投资策略问题. 假定保险公司可以投资于不动产项目、风险证券和无风险证券, 并通过比例再保险控制风险, 目标是最小化保险公司破产概率并求得相应最佳策略, 包括: 不动产项目投资时机、 再保险比例以及投资于风险证券的金额. 运用混合随机控制-最优停时方法, 得到最优值函数及最佳策略的显式解. 结果表明, 当且仅当其盈余资金多于某一水平(称为投资阈值)时保险公司投资于不动产项目. 进一步的数值算例分析表明: (a)~不动产项目投资的阈值主要受项目收益率影响而与投资金额无明显关系, 收益率越高则投资阈值越低; (b)~市场环境较好(牛市)时项目的投资阈值降低; 反之, 当市场环境较差(熊市)时投资阈值提高.  相似文献   

8.
We study a problem of optimal investment/consumption over an infinite horizon in a market consisting of a liquid and an illiquid asset. The liquid asset is observed and can be traded continuously, while the illiquid one can only be traded and observed at discrete random times corresponding to the jumps of a Poisson process. The problem is a nonstandard mixed discrete/continuous optimal control problem, which we face by the dynamic programming approach. The main goal of the paper is the characterization of the value function as unique viscosity solution of an associated Hamilton–Jacobi–Bellman equation. We then use such a result to build a numerical algorithm, allowing one to approximate the value function and so to measure the cost of illiquidity.  相似文献   

9.
In this paper, we consider the problem of optimal dividend payout and equity issuance for a company whose liquid asset is modeled by the dual of classical risk model with diffusion. We assume that there exist both proportional and fixed transaction costs when issuing new equity. Our objective is to maximize the expected cumulative present value of the dividend payout minus the equity issuance until the time of bankruptcy,which is defined as the first time when the company’s capital reserve falls below zero. The solution to the mixed impulse-singular control problem relies on two auxiliary subproblems: one is the classical dividend problem without equity issuance, and the other one assumes that the company never goes bankrupt by equity issuance.We first provide closed-form expressions of the value functions and the optimal strategies for both auxiliary subproblems. We then identify the solution to the original problem with either of the auxiliary problems. Our results show that the optimal strategy should either allow for bankruptcy or keep the company’s reserve above zero by issuing new equity, depending on the model’s parameters. We also present some economic interpretations and sensitivity analysis for our results by theoretical analysis and numerical examples.  相似文献   

10.
We consider a problem faced by a buying office for one of the largest retail distributors in the world. The buying office plans the distribution of goods from Asia to various destinations across Europe. The goods are transported along shipping lanes by shipping companies, many of which have collaborated to form strategic alliances; each lane must be serviced by a minimum number of companies belonging to a minimum number of alliances. The task involves purchasing freight capacity from shipping companies for each lane based on projected demand, and subject to minimum quantity requirements for each selected shipping company, such that the total transportation cost is minimized. In addition, the allocation must not assign an overly high proportion of freight to the more expensive shipping companies servicing any particular lane, which we call the lane cost balancing constraint.This study is the first to consider the lane cost balancing constraint in the context of freight allocation. We formulate the freight allocation problem with this lane cost balancing constraint as a mixed integer programming model, and show that even finding a feasible solution to this problem is computationally intractable. Hence, in order to produce high-quality solutions in practice, we devised a meta-heuristic approach based on tabu search. Experiments show that our approach significantly outperforms the branch-and-cut approach of CPLEX 11.0 when the problem increases to practical size and the lane cost balancing constraint is tight. Our approach was developed into an application that is currently employed by decision-makers at the buying office in question.  相似文献   

11.
This study investigates the properties of the edges in a set of locally optimal tours found by multi-start search algorithm for the traveling salesman problem (TSP). A matrix data structure is used to collect global information about edges from the set of locally optimal tours and to identify globally superior edges for the problem. The properties of these edges are analyzed. Based on these globally superior edges, a solution attractor is formed in the data matrix. The solution attractor is a small region of the solution space, which contains the most promising solutions. Then an exhausted enumeration process searches the solution attractor and outputs all solutions in the attractor, including the globally optimal solution. Using this strategy, this study develops a procedure to tackler a multi-objective TSP. This procedure not only generates a set of Pareto-optimal solutions, but also be able to provide the structural information about each of the solutions that will allow a decision-maker to choose the best compromise solution.  相似文献   

12.
This paper considers a model of an insurance company which is allowed to invest a risky asset and to purchase proportional reinsurance. The objective is to find the policy which maximizes the expected total discounted dividend pay-out until the time of bankruptcy and the terminal value of the company under liquidity constraint. We find the solution of this problem via solving the problem with zero terminal value. We also analyze the influence of terminal value on the optimal policy.  相似文献   

13.
In this paper, a supply chain management problem from a real case study is modeled and solved. A company in Pakistan wanted to outsource part of its warehousing activity to a third party logistics (3PL) provider. Consequently, the company had to decide on where to rent space in the 3PL warehouses. Knowing that such a strategic decision is affected by tactical and operational decisions, the problem is presented as a facility location problem integrating production, inventory, and distribution decisions. The problem is formulated as a mixed integer linear programming model which minimizes the total cost composed of location, distribution, production, and inventory costs. Several constraints specific to the situation and policy of the company were considered. A thorough analysis was done on the results obtained with respect to formulation efficiency, sensitivity analysis, and distribution of costs. In addition to the solution of the company problem, a set of 1215 problem instances was generated by varying five types of relevant costs in a full factorial manner. The solution of the generated problems always suggests to open in the same two locations and the integrality gaps averaged 0.062 % with a maximum of 0.102 %. On average, the major components of the total cost are production cost (96.6 %), transportation costs (2.7 %), and inventory holding costs (0.38 %). The total warehouse opening cost accounted for less than 0.05 % of the total costs.  相似文献   

14.
This paper offers a general discussion of a complex student project used in a first-semester, first-year mathematics course that goes beyond the basics taught in the class and inspires creative problem solving. The project requires the student to model the transition of vehicles among regions of a vehicle rental company. A penalty cost is introduced when the regional inventory drops below an established threshold. The project allows the company to move vehicles by rail among regions to reduce or alleviate the penalty cost. In this phase of the project, student teams attempt to minimize the total cost to the company (penalty cost plus transportation costs), thus searching for an ‘optimal’ solution. The project allows the students to use technology to numerically develop an approximate solution to a problem that is easily understood, but whose analytical solution goes well beyond the scope of the course.  相似文献   

15.
In this paper, we study a robust optimal investment and reinsurance problem for a general insurance company which contains an insurer and a reinsurer. Assume that the claim process described by a Brownian motion with drift, the insurer can purchase proportional reinsurance from the reinsurer. Both the insurer and the reinsurer can invest in a financial market consisting of one risk-free asset and one risky asset whose price process is described by the Heston model. Besides, the general insurance company’s manager will search for a robust optimal investment and reinsurance strategy, since the general insurance company faces model uncertainty and its manager is ambiguity-averse in our assumption. The optimal decision is to maximize the minimal expected exponential utility of the weighted sum of the insurer’s and the reinsurer’s surplus processes. By using techniques of stochastic control theory, we give sufficient conditions under which the closed-form expressions for the robust optimal investment and reinsurance strategies and the corresponding value function are obtained.  相似文献   

16.
本文对索赔次数为复合Poisson-Geometric过程的风险模型,在保险公司的盈余可以投资于风险资产,以及索赔购买比例再保险的策略下,研究使得破产概率最小的最优投资和再保险策略.通过求解相应的Hamilton-Jacobi-Bellman方程,得到使得破产概率最小的最优投资和比例再保险策略,以及最小破产概率的显示表达式.  相似文献   

17.
袁远  施齐焉 《经济数学》2012,29(4):105-110
在经典复合泊松模型中,保险公司将资金投入一个风险投资过程和一个无风险投资过程.当索赔的分布确定后,运用随机控制中的HJB方程最小化保险公司的破产概率,在已知投资规模或投资组合的情况下求解二者中的另一项,进而得到最优投资策略并讨论各种策略的运用对破产概率的影响.解决保险公司的投资资金分配问题,在实际应用中具有一定的参考价值.  相似文献   

18.
In this paper, we assume that the surplus process of an insurance entity is represented by a pure diffusion. The company can invest its surplus into a Black-Scholes risky asset and a risk free asset. We impose investment restrictions that only a limited amount is allowed in the risky asset and that no short-selling is allowed. We further assume that when the surplus level becomes negative, the company can borrow to continue financing. The ultimate objective is to seek an optimal investment strategy that minimizes the probability of absolute ruin, i.e. the probability that the liminf of the surplus process is negative infinity. The corresponding Hamilton-Jacobi-Bellman (HJB) equation is analyzed and a verification theorem is proved; applying the HJB method we obtain explicit expressions for the S-shaped minimal absolute ruin function and its associated optimal investment strategy. In the second part of the paper, we study the optimization problem with both investment and proportional reinsurance control. There the minimal absolute ruin function and the feedback optimal investment-reinsurance control are found explicitly as well.  相似文献   

19.
We consider that the surplus of an insurance company follows a Cramér-Lundberg process. The management has the possibility of investing part of the surplus in a risky asset. We consider that the risky asset is a stock whose price process is a geometric Brownian motion. Our aim is to find a dynamic choice of the investment policy which minimizes the ruin probability of the company. We impose that the ratio between the amount invested in the risky asset and the surplus should be smaller than a given positive bound a. For instance the case a=1 means that the management cannot borrow money to buy stocks.[Hipp, C., Plum, M., 2000. Optimal investment for insurers. Insurance: Mathematics and Economics 27, 215-228] and [Schmidli, H., 2002. On minimizing the ruin probability by investment and reinsurance. Ann. Appl. Probab. 12, 890-907] solved this problem without borrowing constraints. They found that the ratio between the amount invested in the risky asset and the surplus goes to infinity as the surplus approaches zero, so the optimal strategies of the constrained and unconstrained problems never coincide.We characterize the optimal value function as the classical solution of the associated Hamilton-Jacobi-Bellman equation. This equation is a second-order non-linear integro-differential equation. We obtain numerical solutions for some claim-size distributions and compare our results with those of the unconstrained case.  相似文献   

20.
Suppose that p traveling salesmen must visit together all points of a tree, and the objective is to minimize the maximum of the lengths of their tours. The location–allocation version of the problem (where both optimal home locations of the salesmen and their optimal tours must be found) is known to be NP-hard for any p2. We present exact polynomial algorithms with a linear order of complexity for location versions of the problem (where only optimal home locations must be found, without the corresponding tours) for the cases p=2 and p=3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号