首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of transonic flow nonuniformity on the profiling of optimal plug nozzles is studied in the inviscid gas approximation. Sonic and supersonic regions providing maximum thrust for given nozzle dimensions and a given outer pressure are designed for given subsonic contours and calculated nonuniform transonic flows. As in the case of uniform flow on a cylindrical sonic surface, the initial regions of the designed contours satisfy the condition that in these regions the flow Mach number is unity or near-unity. In all the examples calculated, the optimal plug nozzles produce a greater thrust than the optimal axisymmetric and annular nozzles with a near-axial flow for the same lengths and the same gas flow rates through the nozzle. It is established that contouring without regard for transonic flow nonuniformity can result in considerable thrust losses. However, these losses are due only to a decrease in the flow rate, while the specific thrust may even increase slightly.  相似文献   

2.
Large-scale streamwise vortices in the vicinity of a perforated wall in the supersonic part of the nozzle are studied. The governing effect of gas inflow through a perforated wall on origination and parameters of streamwise vortices is experimentally established.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 5, pp. 68–75, September–October, 2005.  相似文献   

3.
A method of combined profiling of a combustion chamber and two-dimensional supersonic nozzle with a given total length is demonstrated with reference to a hydrogen/air hypersonic ramjet. The possibility of a considerable increase in thrust is illustrated by various devices designed within the framework of the method developed.  相似文献   

4.
The problem of determining the optimal contour of a two-dimensional jet engine outlet system was solved in [1] using the direct method of the calculus of variations. In this study the method is developed for designing the optimal contour of a three-dimensional outlet system providing maximum thrust in a given direction.  相似文献   

5.
A two-phase flow with high Reynolds numbers in the subsonic, transonic, and supersonic parts of the nozzle is considered within the framework of the Prandtl model, i.e., the flow is divided into an inviscid core and a thin boundary layer. Mutual influence of the gas and solid particles is taken into account. The Euler equations are solved for the gas in the flow core, and the boundary-layer equations are used in the near-wall region. The particle motion in the inviscid region is described by the Lagrangian approach, and trajectories and temperatures of particle packets are tracked. The behavior of particles in the boundary layer is described by the Euler equations for volume-averaged parameters of particles. The computed particle-velocity distributions are compared with experiments in a plane nozzle. It is noted that particles inserted in the subsonic part of the nozzle are focused at the nozzle centerline, which leads to substantial flow deceleration in the supersonic part of the nozzle. The effect of various boundary conditions for the flow of particles in the inviscid region is considered. For an axisymmetric nozzle, the influence of the contour of the subsonic part of the nozzle, the loading ratio, and the particle diameter on the particle-flow parameters in the inviscid region and in the boundary layer is studied. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 6, pp. 65–77, November–December, 2005.  相似文献   

6.
Turbulent flow separation in over-expanded rocket nozzles is investigated experimentally in a sub-scale model nozzle fed with cold air and having a thrust-optimized contour. Depending upon the pressure ratio either a free shock separation (FSS) or a restricted shock separation (RSS) is observed with a significant hysteresis between these two flow regimes. It is shown that the RSS configuration may involve several separated regions. Analysis of wall pressure fluctuations give quantitative information on the fluctuating pressure field directly connected with the occurrence of significant side loads. Direct measurements of the evolution of the side loads with respect to the pressure ratio show the occurrence of three distinct peaks which are explained by the wall pressure fluctuations measurements.  相似文献   

7.
The present study describes an experimental work to investigate the effect of a nozzle exit reflector on a supersonic jet that is discharged from a convergent–divergent nozzle with a design Mach number of 2.0. An annular reflector is installed at the nozzle exit and its diameter is varied. A high-quality spark schlieren optical system is used to visualize detailed jet structures with and without the reflector. Impact pressure measurement using a pitot probe is also carried out to quantify the reflector’s effect on the supersonic jet which is in the range from an over-expanded to a moderately under-expanded state. The results obtained show that for over-expanded jets, the reflector substantially increases the jet spreading rate and reduces the supersonic length of the jet, compared with moderately under-expanded jets. The reflector’s effect appears more significant in imperfectly expanded jets that have strong shock cell structures, but is negligible in correctly expanded jet.  相似文献   

8.
TVD格式在超音速喷管三维粘性流动求解中的应用   总被引:2,自引:0,他引:2  
详细给出了任意三维曲线坐标系中Novier-Stokes方程的对流项TVD格式的构造过程,建立了数值求解三维粘性流动的计算方法,应用该方法对三维超音速喷管中有激波及无激波情况下的两种工况的层流流场进行了数值求解,并与实验做了对比。结果表明本文建立的计算方法具有较高的精度,同时也证明TVD格式具有分辩率高,稳定收敛等优点,为进一步开展叶栅流场及紊流的研究打下了基础。  相似文献   

9.
The problem of constructing the law of distribution of the normal component of the velocity of blowing to the turbulent boundary layer at supersonic flow velocities which ensure the minimum convective heat flow transmitted from the boundary layer to the surface is considered. The power of the control system calculated with regard to Darcy’s law of flow through a porous medium acts as the isoperimetric condition. The problemis solved using the Dorodnitsyn generalized integral relations. The numerical experiments carried out in the case of flow past a sphere showed the effectiveness of the optimal blowing laws as compared with the uniform law, namely, the gain in the minimized functional reaches 31.82%.  相似文献   

10.
Fundamental aspects of mixing between two gaseous streams in a complex geometry are studied and discussed. In the present paper, a supersonic top-stream is expanded over a 30° ramp, through which a secondary lower-stream is injected. The mass flux through the secondary stream is purposely insufficient to provide the entrainment requirements of the resulting shear layer, causing it to attach to the lower guidewall. Part of the shear layer fluid is directed upstream forming a recirculation zone, with enhanced mixing characteristics. The pressure coefficient of the device is quantified as a function of velocity ratio. The effect of heat release on the pressure coefficient is also reported. Molecular mixing was measured employing “flip” experiments based on the hypergolic hydrogen-fluorine chemical reaction. The amount of mixing for the expansion-ramp geometry is found to be higher than in classical free shear layers. However, as in free shear layers, the level of mixing decreases with increasing top-stream velocity. Results for a similar configuration with subsonic/transonic flow in the top stream are reported in Part I of this two-part series.  相似文献   

11.
A model of a fibrous suspension with plug flow is constructed. A solution to the problem of the flow of a suspension in a straight round tube is obtained for two partial cases and is compared with experiment. With the flow of a fibrous suspension in a round tube, several sets of flow conditions can be distinguished [1–3]. If the flow rate is relatively small, the so-called plug flow is established. It is characterized by the fact that two flow regions are formed in the tube: the core of the flow, or the plug [1–3], in which the mass of the fibers is concentrated, and a layer near the wall in which only the liquid phase of the suspension flows. When the suspension has attained a determined velocity, the plug starts to break down, and the flow ceases to be of the plug type.Petrozavodsk. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 65–71, July–August, 1972.  相似文献   

12.
The oblique wing effect, i.e., a reduction in the wave drag for given lift, cannot be realized for a delta wing with supersonic leading edges owing to the lift reduction in the wing mid-section. To preserve the effect, the disturbances generated by the delta wing vertex must be eliminated by adding a body (wedge) to the wing by replacing the streamsurfaces behind the shock with rigid surfaces. Moreover, using wing tip deflection, and thereby reducing the wave drag to zero, makes it possible to obtain a lift- drag ratio close to that of the limiting, infinitely long flat plate.  相似文献   

13.
The problem of steady supersonic condensation of a monatomic gas on a plane evaporating surface is solved in the Knudsen layer by the direct statistical modeling method. The domain of existence of the solution of the problem is determined. The results of calculating the structure of the Knudsen layer near the surface are presented. A topological picture of the solutions of the strong evaporation and subsonic and supersonic strong condensation problems is given as a function of the Mach number, determined from the normal velocity component, and the other governing parameters.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 171–175, May–June, 1990.  相似文献   

14.
The development of large-scale organised motions in a compressible mixing layer is studied experimentally using holographic interferometry, pressure and turbulence measurements. The mixing layer was formed behind the base of a parallel strut with a Mach 2 air main stream and a co-flowing two-dimensional slot jet (aspect ratio = 45) of helium at a Mach number of 1.2. The mixing layer exhibited highly organised vortical structures which were elongated and inclined approximately 45–50° to the flow direction. The mixing layer showed a linear growth and the mean velocity data indicated self-similar behaviour at sufficiently downstream distances. The results have shown that the thickness of the primary boundary layer has a strong influence on the growth and structure of the mixing layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 106–112, July–August, 1989.  相似文献   

16.
The method of mergeable asymptotic expansions has recently been used effectively in investigations devoted to the study of boundary layer interaction with an external inviscid flow at high subcritical Reynolds numbers Re. The asymptotic analysis permits obtaining a limit pattern of the flow around a solid as Re þ, and determining the similarity and quantitative regularity laws which are in good agreement with experimental results. Thus by using the method of mergeable asymptotic expansions it is shown in [1–4] that near sites with high local curvature of the body contour and flow separation and attachment points, an interaction domain appears that has a small length on the order of Re-3/8. In this flow domain, which has a three-layer structure, the pressure distribution in a first approximation already depends on the change in boundary-layer displacement thickness, while the induced pressure gradient, in turn, influences the flow in the boundary layer. An analogous situation occurs in the neighborhood of the trailing edge of a flat plate where an interaction domain also appears [5, 6]. The flow in the neighborhood of the trailing edge of a flat plate around which a supersonic viscous gas flows was examined in [7]. Numerical results in this paper show that the friction stress on the plate surface remains positive everywhere in the interaction domain, and grows on approaching the trailing edge. The supersonic flow around the trailing edge of a flat plate at a small angle of attack was investigated in [8, 9], Supersonic flow of a viscous gas in the neighborhood of the trailing edge of a flat plate at zero angle of attack is examined in [10], but with different velocity values in the inviscid part of the flow on the upper and lower sides of the plate. The more general problem of the flow around the trailing edge of a profile with small relative thickness is investigated in this paper.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 36–42, May–June, 1981.  相似文献   

17.
18.
International Applied Mechanics - The mathematical model of an inverted pendulum with a flywheel is considered. The complex criterion of optimization and constraints on the control of the motion of...  相似文献   

19.
The problem of profiling a supersonic nozzle with uniform outlet flow is considered when the contour is constructed from a point on a given convergent section of the nozzle. It is shown that there are contours such that the flow in the throat is supersonic in choked regimes (as distinct from common notions of mixed or uniform sonic flow). The influence of flow nonuniformity in the throat region on the thrust of a supersonic nozzle is analyzed.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 132–139, May–June, 1996.  相似文献   

20.
Some results of experimental studies conducted in a wind tunnel at the Mach number M = 1.78 for a blunt body of small elongation are discussed. The effect of the attack angle on the drag and lift coefficients as well as on the static stability and the pressure center position is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号