首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The article describes the adsorption characteristics of DNA onto electrochemically generated polypyrrole-polyvinyl sulfonate (PPY-PVS) films obtained as a function of pH. Adsorption on PPY doped with an anion proceeds by anion exchange, and since DNA possesses a fixed negative charge owing to PO 4 , it favors a very strong binding displacing PVS with favorable energetic interactions. Characterization of adsorbed DNA onto the PPY-PVS films was carried out by ultraviolet-visible, Fourier transform infrared spectroscopy, and cyclic voltammetric studies.  相似文献   

2.
电聚高分子膜固定化酶生物传感器及其进展   总被引:2,自引:0,他引:2  
本文将电化学聚合高分子膜固定膜酶制备的生物传感器分为以下三种主要类型,并分别 就其发展概况和发展方向进行了评述。即:以溶解氧为电子受体的的生物传感器(第一代电流型生物传感器);以非氧介全为电子受体的生物传感器(第二代电流型生物传感器)和电子在酶和聚合高分膜之间直接进行转移的传感器(第三代电流型生物传感器)。  相似文献   

3.
The immobilization of enzymes in organized two-dimensional matrices is a key requirement for many biotechnological applications. In this paper, we used the Langmuir-Blodgett (LB) technique to obtain controlled architectures of urease immobilized in solid supports, whose physicochemical properties were investigated in detail. Urease molecules were adsorbed at the air-water interface and incorporated into Langmuir monolayers of the phospholipid dipalmitoyl phosphatidyl glycerol (DPPG). Incorporation of urease made DPPG monolayers more flexible and caused the reduction of the equilibrium and dynamic elasticity of the film. Urease and DPPG-urease mixed monolayers could be transferred onto solid substrates, forming LB films. A close packing arrangement of urease was obtained, especially in the mixed LB films, which was inferred with nanogravimetry and electrochemistry measurements. From the blocking effect of the LB films deposited onto indium tin oxide (ITO) substrates, the electrochemical properties of the LB films pointed to a charge transport controlled by the lipid architecture.  相似文献   

4.
The natural catalytic cycle of cytochrome (cyt) P450 enzymes in human liver microsome (HLM) films was activated electrochemically via the electron transfer sequence electrode→cyt P450 reductase (CPR)→cyt P450. Cyclic voltammograms for HLM films had midpoint potentials of ?0.50 V vs. SCE at pH 7.4 characteristic of CPR, not cyt P450s. HLM and CPR microsomes without cyt P450s did not electrocatalytically reduce H2O2, and did not shift midpoint potential when CO was added, also indicating that the peaks do not correspond to iron heme cyt P450 enzymes. Electrochemical activation of the natural cyt P450 cycle for substrate conversion via CPR in HLM films was confirmed by catalytic electrolysis in an electrochemical microfluidic array designed to generate and detect reactive metabolites by measuring their reactivity with DNA.  相似文献   

5.
This communication demonstrates direct electron delivery from electrodes to cyt P450 reductases in stable films ( approximately 100 nm thick) of genetically enriched CYP1A2 and CYP3A4 microsomes made by layer-by-layer assembly with polyions. Reversible voltammetry of films containing genetically enriched cyt P450 monooxygenase microsomes was shown to involve cyt P450 reductase by comparison with the pure rabbit reductase and by lack of characteristic reactions of iron heme enzymes, such as reaction of the FeII form with CO and catalytic electrochemical reduction of oxygen and hydrogen peroxide. The microsome films were activated electrochemically to catalyze styrene epoxidation, consistent with the pathway utilized in the human liver, although further work is required to establish this definitively.  相似文献   

6.
An electrochemically controlled drug release system based on nanoporous polypyrrole (PPy) films was developed. Pyrrole and a model drug, fluorescein, were electrochemically copolymerized on glassy carbon (GC) electrodes modified with self-assembled multilayer polystyrene (PS) nanobeads, and PPy films incorporated with fluorescein as dopants were formed among the interstitial spaces of the tightly packed PS nanobead template. After the removal of the PS hard template, nanoporous PPy films incorporated with the drug fluorescein were obtained. Due to the porous morphology and huge surface area, the efficiency of the prepared PPy films in electrochemically releasing incorporated fluorescein was about nine times higher than that of conventional PPy films.  相似文献   

7.
We report on the development of reagentless fluorescence-based sensing films utilizing hydrolytic enzymes co-entrapped with polymers that are labelled with pH sensitive fluorophores. Aqueous solutions of a hydrophilic enzyme (urease) or a lipophilic enzyme (lipase) containing fluorescein or carboxy-seminaphtharhodafluor-1 (SNARF-1), either free or conjugated to a dextran polymer backbone, were mixed with hydrolyzed alkoxysilane solutions and cast onto planar surfaces to form thin, biologically active sol-gel derived films (ca. 500 nm thick). The films also contained various additives, such as methyltrimethoxysilane, dimethyldimethoxysilane, polyethylene glycol or polyvinyl alcohol, to optimize the activity of the entrapped enzymes. The photostability, leaching, pKa and pH response of the entrapped probes were characterized, as was the performance of the entrapped enzymes, and an optimal set of processing conditions was obtained for each different sensing film. In general, the results indicated that SNARF-labelled dextran was the most useful pH sensitive dye owing to insensitivity to leaching and photobleaching. Furthermore, it was observed that the pKa and pH response of this probe was insensitive to preparation conditions. The performance of the co-entrapped enzymes was highly dependent on the type and level of additive, but in all cases, it was possible to obtain active enzymes with good performance characteristics. Reagentless sensing films for urea and glyceryl tributyrate (GTB) are demonstrated based on the detection of enzyme-mediated pH changes from films coated onto planar substrates.  相似文献   

8.
A novel method for fabricating protein-MWNT films on pyrolytic graphite (PG) electrodes was described. Positively charged hemoglobin (Hb) or myoglobin (Mb) in buffers at pH 5.5 or 5.0 was first adsorbed on the surface of acid-pretreated, negatively charged multiwalled carbon nanotubes (MWNTs) mainly by electrostatic interaction, forming a core-shell structure. The aqueous dispersion of protein-coated MWNTs was then cast on PG electrodes, forming protein-MWNT films after evaporation of solvent. The protein-MWNT films exhibited a pair of well-defined, quasi-reversible cyclic voltammetric peaks, characteristic of heme Fe(III)/Fe(II) redox couples. The protein films were characterized by voltammetry, UV-vis spectroscopy, and scanning electron microscopy (SEM). This approach for assembly of protein-MWNT films showed higher surface concentration of electroactive proteins than the simple cast method, and the amount of proteins in the films could be controlled more precisely compared with the dipping method. Furthermore, the film assembly using this method was more stable than that using simple cast method. The proteins in MWNT films retained their near-native structure, and electrochemically catalyzed reduction of oxygen and hydrogen peroxide, suggesting the potential applicability of the films as the new type of biosensors or bioreactors based on direct electrochemistry of enzymes.  相似文献   

9.
We have electrochemically synthesized mesoporous platinum–copper films with various compositions in an aqueous surfactant solution. By tuning the composition ratios of the platinum and copper sources in the precursor solutions, mesoporous bimetallic films with copper contents that dramatically change from 0 to 70 mol % can be successfully prepared. The obtained bimetallic films possess uniformly sized mesopores over the entire area. These mesoporous platinum–copper films are electrochemically active and show composition‐dependent catalytic activity and stability for the methanol oxidation reaction. The bimetallic mesoporous films are a promising new class of electrocatalyst for the future.  相似文献   

10.
本文采用旋转涂布制备了Si-Mo-W酸盐的电致变色薄膜。伴随着Li+的电化学注入,这些薄膜呈现出可逆的颜色变化。由于这类电致变色薄膜的变色幅度较小,故可用作为强变色材料的对电极。  相似文献   

11.
Classical TG analysis of films supported on micro-cover glasses was performed in order to determine the appropriate processing temperature to achieve electrochemically active NiOxHy thin films. As deposited films made from three different precursors (Ni-acetate, nitrate and sulphate) and their corresponding powders were also investigated. From dynamic TG measurements the onset decomposition temperature could be determined. It was found out that the starting temperature of the mass change of thin films is approximately 30 degrees lower than that of the powders. A broader decomposition range was also observed for thin films. Furthermore, the isothermal treatment of films deposited on conducting substrate at 270 and 300°C was performed and by cyclic voltametry the importance of temperature and time of heating was proved. Films obtained at higher temperatures (>300°C) are electrochemically inert because of the NiO phase formation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Application of Boolean logic operations performed by enzymes to control electrochemical systems is presented. Indium–tin oxide (ITO) electrodes with the surface modified with poly-4-vinyl pyridine (P4VP) brush were synthesized and used as switchable electrochemical systems. The switch ON and OFF of the electrode activity were achieved by pH changes generated in situ by biocatalytic reactions in the presence of enzymes used as input signals. Two logic gates operating as AND/OR Boolean functions were designed using invertase and glucose oxidase or esterase and glucose oxidase as input signals, respectively. The electrode surface coated with a shrunk P4VP polymer at neutral pH values was not electrochemically active because of the blocking effect of the polymer film. The positive outputs of the logic operations yielded a pH drop to acidic conditions, resulting in the protonation and swelling of the P4VP polymer allowing penetration of a soluble redox probe to the conducting support, thus switching the electrode activity ON. The electrode interface was reset to the initial OFF state, with the inhibited electrochemical reaction, upon in situ pH increase generated by another enzymatic reaction in the presence of urease. Logically processed biochemical inputs of various enzymes allowed reversible activation–inactivation of the electrochemical reaction.  相似文献   

13.
《Electroanalysis》2004,16(6):497-504
Different cholesterol amperometric biosensors were developed based on entrapment of cholesterol esterase and/or cholesterol oxidase in polymer films of diaminonaphthalene isomers, electrochemically synthesised from aqueous solutions of the monomers and enzymes in phosphate buffer at neutral pH. These conditions permit the growth of films with extraordinary selective properties which allow the preparation of interference‐free biosensors for application in biological media without the response being affected by the presence of either endogenous species (ascorbic and uric acid) or exogenous species like 4‐acetamidophenol. These selective properties were evaluated for the different monolayer and bilayer configurations proposed in function of the film permeation factor. All the steps involved in the preparation of the biosensors and determination of free or total cholesterol were carried out in a flow system. A comparative study was made of the analytical properties of each of the configurations developed and their application to the flow‐injection determination of cholesterol in a synthetic serum.  相似文献   

14.
以氯化铜水溶液作电解液,在发光多孔硅薄膜表面上电沉积铜.SEM观测和计算机图像处理结果表明:电沉积之后,在多孔硅薄膜上形成了一些或实心或中空的等边三角形铜微晶,沉积后的多孔硅薄膜的分形维数从2.608降为2.252,其表面由粗糙变为光滑.与物理方法制作相比,这是一种机械强度和导电性能都更加良好的多孔硅薄膜.  相似文献   

15.
Byssus threads are tough biopolymer produced by mussels (Mytilus viridis) to attach themselves to rocks. These were collected from mussels in their natural habitat (N) and from animals maintained in laboratory condition (L) as a novel support. Byssus thread surfaces were characterized by SEM analysis, chemically modified and used for adsorption of urease. The efficiency of the immobilization was calculated by examining the relative enzyme activity of free and the immobilized urease. The pH stabilities of immobilized urease were higher (0.5 unit) than free enzyme. Immobilized enzymes on byssus (both N and L) when stored at 6 °C retained 50% of its activity after 30 days, but they were more stable in dry condition. The optimum temperature of immobilized enzymes was found to increase (25 °C). A Michaelis-Menten constant (K (m)) value for immobilized urease was also elevated (2.08 mol).  相似文献   

16.
Protective polymer coatings have been used to enhance the retention of enzymes in sol-gel films as immobilisation phases in electrochemical biosensors. Carbon film electrodes were electrochemically modified with poly(neutral red) (PNR). These electrodes were coated with oxysilane sol-gels incorporating glucose oxidase and an outer coating of carboxylated PVC (CPVC) or polyurethane (PU), with and without Aliquat-336 or isopropyl myristate (IPM) plasticizer, was applied. The biosensors were characterised electrochemically using cyclic voltammetry and amperometry, electrochemical impedance spectroscopy and scanning electron microscopy. Impedance spectra showed that the electrode surface is most active when the sol-gel–GOx layer is not covered with a membrane. However, membranes without plasticizer extend the lifetime of the biosensor to more than 2 months when PU is used as an outer membrane. The linear range of the biosensors was found to be 0.05–0.50 mM of glucose and the biosensor with PU outer membrane exhibited higher sensitivity (ca.117 nA mM−1) in the region of linear response than that with CPVC. The biosensors were applied to glucose measurement in natural samples of commercial orange juice.  相似文献   

17.
In this study, we present an electrochemically controlled surface plasmon resonance (EC‐SPR) biosensor to detect adrenaline on poly(2‐aminobenzylamine) (P2ABA) thin films. The P2ABA thin films are stable and display electroactivity in a neutral PBS solution. Specific detection of adrenaline was performed on P2ABA thin films because the benzylamine groups in the P2ABA structure could specifically react with adrenalines. Adrenaline was detected in real time by EC‐SPR spectroscopy, which provides an EC‐SPR reflectivity change on the P2ABA thin film upon adrenaline injection. The measured responses were quite different from those for uric acid and ascorbic acid, which are major interferences in adrenaline detection. The electrochemically applied potential facilitates the specific detection of adrenaline. In addition, the detection of adrenaline on the P2ABA thin films was investigated by a quartz crystal microbalance technique. The detection limit for adrenaline at open circuit potential was 10 pM. The present study provides a useful information on the detection of adrenaline on the P2ABA thin films. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
p-CuSCN/n-ZnO heterojunction devices were prepared by depositing CuSCN electrochemically over a ZnO film previously deposited. The compact and smooth surface films of n-ZnO on FTO substrate were deposited electrochemically from a nonaqueous bath. The CuSCN films were characterized by cyclic voltammetry, chronoamperometry, SEM, energy-dispersive X-ray spectroscopy, and XRD measurements. The pure crystalline films of CuSCN with intrinsic trigonal pyramidal morphology over the ZnO films were obtained electrochemically by fixing the SCN/Cu ratio in the electrolytic bath 1.5:1 at 60 °C with ?0.4 V deposition potential. Photocurrent measurements showed the increase of intrinsic surface states or defects in ZnO/CuSCN interface. The I–V characteristic of p-CuSCN/n-ZnO heterojunctions shows good rectification behavior with a rectification ratio of 250 at ±2 V. The value of 2.81 of the ideality factor calculated by fitting the semilogarithmic I–V data with the ideal diode equation revealed the better electrical contact between the smooth ZnO and CuSCN films than that of ZnO nano-rods and CuSCN crystallites.  相似文献   

19.
A photopolymerization process that simultaneously deposits electronically conducting polymer films and incorporates nanophase silver grains within the films, the silver grains having been formed in situ on irradiating cast, photopolymerizable formulations containing silver salts, was developed. Polymer films produced from formulations containing large organic anions were very flexible and strongly adherent to substrates. Polypyrrole films containing silver grains were characterized electronically on measuring their electronic conductivities and electrochemically on recording their cyclic voltammetric profiles. Conductivities were affected by the chemical identity and concentration of components added to photopolymerizable formulations. The best photopolymerized films had a conductivity of the order of 1 S cm−1. Electronically conducting films derived from formulations consisting of a monomer, an electron acceptor/“dopant,” and a photoinitiator were electrochemically active. They possessed long-term stability under extended electrode potential cycling conditions, acceptable charge storage capacity, and the ability to oxidize or reduce redox couples in solution. Paper submitted for inclusion in the special issue of the Journal of Solid State Electrochemistry honouring the 85th birthday of Professor John O’M. Bockris.  相似文献   

20.
Nitrophenyl (NP) films were grafted to glassy carbon and pyrolyzed photoresist films by electroreduction of the corresponding diazonium salt. The as-prepared, multilayered films were examined using electrochemistry and X-ray photoelectron spectroscopy (XPS). Electrochemical analysis confirmed the absence of electrooxidizable groups whereas XPS showed approximately 35% of N was present in a reduced form. The reduced N is assigned to azo groups, which are known to be electroinactive in the film environment. NP films were reduced electrochemically in three media and also by chemical reduction in ethanolic disodium sulfide. The concentrations of aminophenyl and hydroxylaminophenyl groups produced by each method were estimated electrochemically, and the relative amounts of unreacted NP groups were established from XPS measurements. Aminophenyl is the major product for all reduction methods, and Na2S gives the cleanest and most complete conversion to aminophenyl groups, with less than 5% residual NP. Reduced NP films were reacted with carboxylic acid and acid chloride derivatives; the highest yield of electroactive-coupled product was obtained for a film electroreduced in H2SO4 and reacted with acid chloride. The detailed electrochemical and XPS analysis reveals the limitations of electrochemistry for determining the composition of these films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号