首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report here the photochemical surface modification of poly(methyl methacrylate), PMMA, microfluidic devices by UV light to yield pendant carboxylic acid surface moieties. Patterns of carboxylic acid sites can be formed from the micrometer to millimeter scale by exposure of PMMA through a contact mask, and the chemical patterns allow for further functionalization of PMMA microdevice surfaces to yield arrays or other structured architectures. Demonstrated here is the relationship between UV exposure time and PMMA surface wettability, topography, surface functional group density, and electroosmotic flow (EOF) of aqueous buffer solutions in microchannels made of PMMA. It is found that the water contact angle on PMMA surfaces decreases from 70 degrees to 24 degrees after exposure to UV light as the result of the formation of carboxylic acid sites. However, upon rinsing with 2-propanol, the water contact angle increases to approximately 80 degrees , and this increase is attributed to changes in surface roughness resulting from removal of low molecular weight PMMA formed from scission events. In addition, the surface roughness and surface coverage of carboxylic acid groups exhibit a characteristic trend with UV exposure time. Electroosmotic flow (EOF) in PMMA microchannels increases upon UV modification and is pH dependent. The possible photolysis mechanism for formation of carboxylic acid groups on PMMA surfaces under the conditions outlined in this work is discussed.  相似文献   

2.
利用座滴法研究了两性离子表面活性剂支链十六烷基(聚氧乙烯)n醚羟丙基羧酸甜菜碱(n = 0, 3)和阳离子表面活性剂支链十六烷基(聚氧乙烯)n醚羟丙基季铵盐溶液在聚甲基丙烯酸甲酯(PMMA)表面上的润湿性质,考察了表面活性剂类型、结构及浓度对接触角的影响趋势。研究发现,表面活性剂浓度低于临界胶束浓度(cmc)时,分子通过氢键以平躺的方式吸附到PMMA界面,亲水基团靠近固体界面, PMMA表面被轻微疏水化;表面张力和粘附张力同时降低,导致此阶段接触角随浓度变化不大。浓度高于cmc时,表面活性剂通过疏水作用吸附,亲水基团在外, PMMA表面被明显亲水改性,接触角随浓度升高显著降低。由于具有相同的支链烷基,表面活性剂类型变化和聚氧乙烯基团的引入对接触角影响不大。  相似文献   

3.
The diffusion processes of water molecules into polymer films (PMMA/PS homopolymers and random copolymers) in contact with liquid water were investigated using gravimetric methods and X-ray reflectivity (XRR) analysis. Methods of water contact and XRR measurement were designed for studying the systems in the nonequilibrium state of diffusion. Gravimetric measurements confirmed the Fickian diffusion behavior of films in contact with water. Vertical density distributions in PMMA and methylmethacrylate-rich copolymer films demonstrate the existence of a water-rich layer at the interface. However, with further absorption of water into the film, the overall density increased throughout the film. The results suggest that the diffusion of water into the polymer film occurs to recover density uniformity with a high concentration of water molecules at the surface. Some XRR data for the PS- and styrene-rich copolymer films could not be fit and converted to a vertical density distribution because of their huge diffusion coefficients. However, the reflectivity curves for these films and the vertical density distribution after sufficient water contact suggested that the surfaces of these films were commonly diffused after water contact. Atomic force microscopy (AFM) analysis demonstrated that the surface roughness of these films actually increased with water content.  相似文献   

4.
The adsorption behaviors of extended anionic surfactants linear sodium dodecyl(polyoxyisopropene)4 sulfate (L-C12PO4S), branched sodium dodecyl(polyoxyisopropene)4 sulfate (G-C12PO4S), and branched sodium hexadecyl(polyoxyisopropene)4 sulfate (G-C16PO4S) on polymethylmethacrylate (PMMA) surface have been studied. The effect of branched alkyl chain on the wettability of the PMMA surface has been explored. To obtain the adsorption parameters such as the adhesional tension and PMMA-solution interfacial tension, the surface tension and contact angles were measured. The experimental results demonstrate that the special properties of polyoxypropene (PO) groups improve the polar interactions and allow the extended surfactant molecules to gradually adsorb on the PMMA surface by polar heads. Therefore, the hydrophobic chains will point to water and the solid surface is modified to be hydrophobic. Besides, the adsorption amounts of the three extended anionic surfactants at the PMMA–liquid interface are all about 1/3 of those at the air–liquid interface before the critical micelle concentration (CMC). However, these extended surfactants will transform their original adsorption behavior after CMC. The surfactant molecules will interact with the PMMA surface with the hydrophilic heads towards water and are prone to form aggregations at the PMMA–liquid interface. Therefore, the PMMA surface will be more hydrophilic after CMC. In the three surfactants, the branched G-C16PO4S with two long alkyl chains exhibits the strongest hydrophobic modification capacity. The linear L-C12PO4S is more likely to densely adsorb at the PMMA–liquid interface than the branched surfactants, thus L-C12PO4S possesses the strongest hydrophilic modification ability and shows smaller contact angles on PMMA surface at high concentrations.  相似文献   

5.
A series of two-level hierarchical structures on polystyrene (PS) and poly(methyl methacrylate) (PMMA) were fabricated using sequential nanoimprinting lithography (NIL). The hierarchical structures consist of micrometer and sub-micrometer scale grating imprinted with varying orientations. Through water contact angle measurements, these surface hierarchical structures showed a wide range of anisotropic wettabilities on PMMA and PS, with PMMA having an anisotropic wettability from 6 degrees to 54 degrees and PS having an anisotropic wettability from 8 degrees to 32 degrees. At the same time, the water contact angle of PMMA and PS can be tuned to nearly 120 degrees without modifying the surface chemistry. A tunable anisotropic wettability is beneficial for applications where controlling the direction of liquid flow is important, such as in microfluidic devices.  相似文献   

6.
ABSTRACT

From surface tensions of liquids and Lifshitz-van der Waals (LW) and Lewis acid-base (AB) surface tension components and the AB electron-acceptor γ+ and electron-donor γ˙ parameters determined by contact angle (θ) measurements (using the Young-Dupré equation for polar systems), the interfacial work of salvation (Wst) between various contact angle liquids (L) and a moderately polar solid (S), such as polymethylmethacrylate (PMMA) could be determined. From these WSL -values the maximum values of the equilibrium association constant, Ka, are obtained for the adsorption of molecules of liquids, L, onto a solid substratum, S. From the Ka-values and the vapor pressures of the various liquids, the maximum number of liquid molecules adsorbed from the gaseous phase onto the solid surface can be determined, at 20°C and 76cm Hg ambient atmospheric pressure. This yields the maximum value for the fraction, ?, of the surface area of the solid that will be covered by molecules of the liquid, L, emanating from the liquid drop, via the gaseous state. From these ?-values, using Cassie's approach, the maximum amount, Δθ, can be determined by which the observed contact angle is lower than the ideal contact angle, as a consequence of the coverage of the solid substratum by adsorbed molecules originating from the contact angle liquid.

For most of the contact angle liquids used, the maximum deviation, Δθ, is well under 1°; for water on PMMA it is about 1½°.  相似文献   

7.
Sum frequency generation (SFG) vibrational spectroscopy has been applied to study the molecular surface structures of polystyrene (PS)/poly(methyl methacrylate) (PMMA) blends and the copolymer between PS and PMMA (PS-co-PMMA) in air, supplemented by atomic force microscopy (AFM) and contact angle goniometer. Both the blend and the copolymer have equal weight amounts of the two components. SFG results show that both components, PS and PMMA, can segregate to the surface of the blend and the copolymer before annealing, although PMMA has a slightly higher surface tension. Upon annealing both SFG results and contact angle measurements indicate that the PS segregates to the surface of the PS/PMMA blend more but no change occurs on the PS-co-PMMA surface. AFM images show that the copolymer surface is flat but the 1:1 PS/PMMA blend has a rougher surface with island like domains present. The annealing effect on the blend surface morphology has also been investigated. We collected amide SFG signals from interfacial fibrinogen molecules at the copolymer or blend/protein solution interfaces as a function of time. Different time-dependent SFG signal changes have been observed, showing that different surfaces of the blend and the copolymer mediate fibrinogen adsorption behavior differently.  相似文献   

8.
Advancing contact angle (theta) measurements were carried out for aqueous solutions of cetyltrimethylammonium bromide (CTAB) and cetylpyridinium bromide (CPyB) mixtures on polytetrafluoroethylene (PTFE) and polymethyl methacrylate (PMMA). The obtained results indicate that the wettability of PTFE and PMMA by aqueous solutions of CTAB and CPyB mixtures depends on the composition and concentration of the mixture; however, synergism in the wettability does not exist. In the range of low concentrations of aqueous solution mixtures there is a linear dependence between the contact angle and composition of the mixtures, but at a concentration close to CMC a deviation from linear dependence is observed. In contrast to Zisman, there is no linear dependence between costheta and the surface tension of aqueous solution of CTAB and CPyB mixtures, but a linear dependence exists between the adhesional and surface tension, and these lines have a slope -1 and -0.34 for PTFE and PMMA, respectively, which suggests that adsorption of CTAB and CPyB mixtures at water-air and PTFE-water is the same, and the orientation of the CTAB and CPyB molecules at both interfaces in the saturated monolayer should also be the same. Adsorption of these mixtures at water-air interface is considerably higher than at PMMA-water interface, and CTAB and CPyB molecules should be parallelly oriented to PMMA surface in the saturated monolayer. Extrapolation of the straight lines to the points corresponding to the surface tension of aqueous solution, which completely spreads over the PTFE and PMMA surface, gives a critical surface tension of wetting equal to 23.44 and 33.13 mN/m, respectively. The value of 23.44 mN/m is higher than that of the surface tension of PTFE, but the value of 33.13 is lower than that of Lifshitz-van der Waals components of PMMA surface tension. On the basis of the critical surface tension, the surface tension of PTFE and PMMA, the Young equation, and thermodynamic analysis of the adhesion work of aqueous solution of surfactant to polymer surface, it was found that for PTFE and PMMA the changes of the contact angle of aqueous solution of two cationic surfactants mixtures on their surfaces as a function of the solution concentration resulted only from the decrease of the polar component of the solution surface tension.  相似文献   

9.
利用座滴法研究了阳离子表面活性剂十六烷基醚羟丙基季铵盐(C16PC)、十六烷基聚氧乙烯醚羟丙基季铵盐(C16(EO)3PC)和两性离子表面活性剂十六烷基醚羟丙基羧酸甜菜碱(C16PB)、十六烷基聚氧乙烯醚羟丙基羧酸甜菜碱(C16(EO)3PB)溶液在聚甲基丙烯酸甲酯(PMMA)表面上的润湿性质, 考察了表面活性剂类型及浓度对接触角的影响趋势. 研究发现: 低浓度条件下表面活性剂分子可能以平躺的方式吸附到固体界面, 且亲水基团靠近固体界面, PMMA表面被轻微疏水化; 在高浓度时则通过Lifshitz-van der Waals 作用吸附, 亲水基团在外, PMMA表面被亲水改性. 聚氧乙烯基团(EO基团)的引入对阳离子表面活性剂的接触角影响不大; 而含有聚氧乙烯基团的两性离子表面活性剂在PMMA界面上以类似半胶束的聚集体吸附, 大幅度降低接触角.  相似文献   

10.
An investigation of energetic properties of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) layers deposited on glass, mica, and PMMA (poly(methyl methacrylate)) surfaces was carried out by means of contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide). DPPC was deposited on the surfaces from water (on glass and mica) or methanol (on PMMA) solutions. The topography of the tested surfaces was determined with a help of scanning electron microscopy (SEM) and atomic force microscopy (AFM). Using the measured contact angles, the total apparent surface free energy and its components of the studied layers were determined from van Oss et al.'s (Lifshitz-van der Waals and acid-base components, LWAB) and contact angle hysteresis (CAH) approaches. It allowed us to learn about changes in the surface free energy of the layers (hydrophobicity/hydrophilicity) depending on their number and kind of support. It was found that the changes in the energy greatly depended on the surface properties of the substrate as well as the statistical number of monolayers of DPPC. However, principal changes took place for first three monolayers.  相似文献   

11.
ABSTRACT

Deposition efficiencies of six coagulase-negative staphylococcal strains in phosphate buffered saline (pH 7) to positively (PMMA/TMAEMA-Cl) and negatively (PMMA) charged collector surfaces were studied using a parallel plate flow chamber and “real-time” image analysis. The influence of hydrophobic interactions on the deposition process was kept the same for all combinations of strains and polymers by choosing strains and polymers with similar water contact angles. Zeta potentials of the strains ranged from ?14.5 to +4.5 mV and zeta potentials for the collector surfaces were ?13 mV for PMMA and + 2 mV for PMMA/TMAEMA-Cl. Deposition efficiencies were expressed as the ratios between the experimentally observed initial deposition rates and the initial deposition rates, calculated on the basis of the Smoluchowski-Levich approximation. In case of the negatively charged PMMA collectors, deposition efficiencies decreased with increasing electrostatic repulsion between bacteria and the collector, as theoretically expected. However, in case of the positively charged PMMA/TMAEMA-Cl collectors, no such relation was found. This may be due to the fact that the surface charge of this material easily change in time after contact with buffer. Another reason may be the high mobility of the molecules, easily reorienting themselves when contacted with different interfaces, like a fluid or a cell interface.  相似文献   

12.
In this work a generalized hydrodynamic theory for water flow into a mesoporous matrix from hydrophobized silica gel is suggested. Although we examine a fluid dynamics problem, the motion of the water-gas-solid contact line past a hydrophobized silica gel surface, motivation for such research derives from the investigation of a novel principle of mechanical energy dissipation, called surface dissipation, and its attached machine element, named a colloidal damper (CD). Similar to a hydraulic damper, this absorber has a cylinder-piston structure, but oil is replaced by a colloid consisting of a mesoporous matrix and a lyophobic liquid. Here, the mesoporous matrix is from silica gel modified by linear chains of alkyldimethylchlorosilanes and water is the associated lyophobic liquid. Mainly, the colloidal damper energy loss can be explained by the dynamic contact angle hysteresis in advancing (liquid displaces gas) and receding motion (gas displaces liquid); such hysteresis occurs due to the geometrical and chemical heterogeneities of the solid surface. Although this new kind of dissipation could be attractive for many applications, the subject remains almost unexplored in the scientific literature. Many different, complex, and interconnected aspects are related to this subject: capillary hydrodynamics, slippage effect, contact angle hysteresis, estimation of dissipated energy, thickness optimization of the grafted layer on the surface of the mesoporous matrix, etc. For this reason, a novel and global approach to all the complex and interconnected phenomena related to the contact line movement past a solid surface from hydrophobized silica gel is proposed. Our approach has a modest experimental basis but this is compensated for with rich references to other experimental and theoretical work oriented to the study of surface phenomena in such systems. We tried to sort the existing results and to find the right place for each in building our global view of the problem. This work is structured as follows. The measurement technique of the hysteresis loop is described. From experimental data one calculates the dissipated energy versus length of the grafted molecule on the silica gel surface. These results are justified by flow analysis. Generalized hydrodynamic theory means here that the basic structure of the Navier-Stokes equations is kept, but in order to include the relation between macroscopic flow and molecular interactions, slip is allowed on the solid wall. The nanopillar architecture of the silica gel hydrophobic coating is described. Concepts of slip and contact angle hysteresis are detailed and their connection is revealed. During adsorption, water penetrates the pore space by maintaining contact with the top of the coating molecules (region of -CH(3) groups); after that, water is forced into and partially or totally fills the space between molecules (region of -CH(2) groups). In such circumstances, at the release of the external pressure, desorption occurs. An original energetic-barriers approach is proposed to understand the filling of the nanosize canals which occur in the hydrophobic grafted layer. Employing this energetic-barriers approach, one finds the optimum length of the grafted molecule which maximizes the dissipated energy of the CD reversible cycle. Such results are useful for the appropriate design of ultrahydrophobic surfaces in general, and for the optimal design of a hydrophobic coating of a mesoporous matrix destined for CD use.  相似文献   

13.
Describing wetting of a liquid on a rough or structured surface is a challenge because of the wide range of involved length scales. Nano- and micrometer-sized textures cause pinning of the contact line, reflected in a hysteresis of the contact angle. To investigate contact angles at different length scales, we imaged water drops on arrays of 5 μm high poly(dimethylsiloxane) micropillars. The drops were imaged by laser scanning confocal microscopy (LSCM), which allowed us to quantitatively analyze the local and large-scale drop profile simultaneously. Deviations of the shape of drops from a sphere decay at two different length scales. Close to the pillars, the amplitude of deviations decays exponentially within 1-2 μm. The drop profile approached a sphere at a length scale 1 order of magnitude larger than the pillars' height. The height and position dependence of the contact angles can be understood from the interplay of pinning of the contact line, the principal curvatures set by the topography of the substrate, and the minimization of the air-water interfaces.  相似文献   

14.
Polymethylmethacrylate (PMMA) films were modified by RF oxygen plasma with various powers applied for different periods, and the effects of these parameters on the surface properties such as hydrophilicity, surface free energy (SFE), chemistry, and topography were investigated by water contact angle, goniometer, X‐ray photoelectron spectroscopy (XPS), and atomic force microscopy, and the types of the created free radicals and their decay were detected by electron spin resonance spectroscopy (ESR). SFE and contact angle results varied depending on the plasma parameters. Oxygen plasma treatment (100 W–30 min) enhanced the hydrophilicity of PMMA surface as shown by decreasing the water contact angle from 70° to 26°. XPS analysis showed the change in the amounts of the present functionalities as well as formation of new groups as free carbonyl and carbonate groups. The roughness of the surface increased considerably from ~2 nm to ~75 nm after 100 W–30 min oxygen plasma treatment. ESR analysis indicated the introduction of peroxy radicals by oxygen plasma treatment, and the intensity of the radicals increased with increasing the applied power. Significant decrease in radical concentration was observed especially for the samples treated with higher powers when the samples were kept under the atmospheric conditions. As a conclusion, RF plasma, causes changes in the chemical and physical properties of the materials depending on the applied parameters, and can be used for the creation of specific groups or radicals to link or immobilize active molecules onto the surface of a material. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Using molecular dynamics simulations on the microsecond time scale, we investigate the nucleation and growth mechanisms of CO(2) hydrates in a water/CO(2)/silica three-phase system. Our simulation results indicate that the CO(2) hydrate nucleates near the three-phase contact line rather than at the two-phase interfaces and then grows along the contact line to form an amorphous crystal. In the nucleation stage, the hydroxylated silica surface can be understand as a stabilizer to prolong the lifetime of adsorbed hydrate cages that interact with the silica surface by hydrogen bonding, and the adsorbed cages behave as the nucleation sites for the formation of an amorphous CO(2) hydrate. After nucleation, the nucleus grows along the three-phase contact line and prefers to develop toward the CO(2) phase as a result of the hydrophilic nature of the modified solid surface and the easy availability of CO(2) molecules. During the growth process, the population of sI cages in the formed amorphous crystal is found to increase much faster than that of sII cages, being in agreement with the fact that only the sI hydrate can be formed in nature for CO(2) molecules.  相似文献   

16.
The local morphology and its evolution of an air-liquid-solid three-phase contact line was studied on the homogeneous surfaces of homopolymer of polystyrene (PS) and poly(methyl methacrylate) (PMMA) and the nanostructured surface of diblock copolymer of PS- b-PMMA by the approach of the morphological study of the residual solid after droplet evaporation of water-soluble polymers such as poly(vinylpyrrolidone) (PVP) and poly(acrylic acid). The observation by atomic force microscopy discovered the stripelike "button-and-ribbon" structure of the precipitated polymer solute along the moving direction of the contact line. On the surface of PS- b-PMMA, the morphology of PVP has a close correlation with the nanostructure of PS- b-PMMA. The results exhibit the local morphology of the contact line and its evolution, revealing its pinning and depinning processes on the nanometer scale.  相似文献   

17.
Relationships between formulation, bulk properties, and surface properties are investigated on series of copolymers prepared with hydroxyethylmethacrylate (HEMA), methylmethacrylate (MMA), and ethylmethacrylate (EMA) monomers, and on the homopolymers PMMA and PHEMA. The bulk water content, swelling ratio, and static (sessile drop and captive bubble) and dynamic (Wilhelmy plate technique) contact angles and the electrokinetic potential (streaming potential) are measured. The bulk water content and swelling ratio of HEMA copolymers are proportional to the amount of HEMA and are linearly correlated to the contact angle hysteresis. Periodic instabilities in the wetting cycles, similar to Haines jumps, are observed with HEMA copolymers and support a bidirectional relaxation of the hydrophilic groups respectively towards external water and capillary water. The origin of the electrokinetic potential of these nonionizable polymers is attributed to specific adsorption of [Formula: see text] ions. Its dependence on surface hydrophobicity and statistical length of the side-chains is interpreted in terms of the properties of water molecules near the interface.  相似文献   

18.
Atmospheric‐pressure spin plasma jets (APSPJs) have been developed to induce surface modifications on polymethylmethacrylate (PMMA). In this study, an experimental design methodology was used to investigate the influence of process parameters [such as radio frequency (RF) power, processing gap, and number of treatment cycles] on the characteristics of PMMA surface treated by APSPJs. It was observed from the atomic force microscope (AFM) and scanning electron microscope (SEM) results that the surface morphology of PMMA treated by direct plasma is much rougher than that treated by remote plasma. The direct plasma used in APSPJs processing created a substantial amount of nanostructure grains. Moreover, the measured XPS results showed that the O/C ratios of the PMMA surface were substantially increased and subsequently water contact angle decreased on direct plasma treatment. This decrease is due to an increase of oxygen‐containing functional groups on the PMMA surface by the APSPJs processing. From the statistical analysis, the RF power and the processing gap were found to play a major role in enhancing the hydrophilic properties of PMMA surface. In contrast, the number of treatment cycles played only a secondary role in this case. Finally, in this study the APSPJs processing was demonstrated to be an effective method for surface modification of PMMA by controlling processing parameters during the treatment process. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The organization of adsorbed type I collagen layers was examined on a series of polystyrene (PS)/poly(methyl methacrylate) (PMMA) heterogeneous surfaces obtained by phase separation in thin films. These thin films were prepared by spin coating from solutions in either dioxane or toluene of PS and PMMA in different proportions. Their morphology was unraveled combining the information coming from X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle measurements. Substrates with PMMA inclusions in a PS matrix and, conversely, substrates with PS inclusions in a PMMA matrix were prepared, the inclusions being either under the form of pits or islands, with diameters in the submicrometer range. The organization of collagen layers obtained by adsorption on these surfaces was then investigated. On pure PMMA, the layer was quite smooth with assemblies of a few collagen molecules, while bigger assemblies were found on pure PS. On the heterogeneous surfaces, it appeared clearly that the diameter and length of collagen assemblies was modulated by the size and surface coverage of the PS domains. If the PS domains, either surrounding or surrounded by the PMMA phase, were above 600 nm wide, a heterogeneous distribution of collagen was found, in agreement with observations made on pure polymers. Otherwise, fibrils could be formed, that were longer compared to those observed on pure polymers. Additionally, the surface nitrogen content determined by XPS, which is linked to the protein adsorbed amount, increased roughly linearly with the PS surface fraction, whatever the size of PS domains, suggesting that adsorbed collagen amount on heterogeneous PS/PMMA surfaces is a combination of that observed on the pure polymers. This work thus shows that PS/PMMA surface heterogeneities can govern collagen organization. This opens the way to a better control of collagen supramolecular organization at interfaces, which could in turn allow cell-material interactions to be tailored.  相似文献   

20.
We proposed an interface molecule for immobilization of DNA probes on solid substrates of DNA chips. We have designed and synthesized tripodal thiol derivatives for stable immobilization of oligonucleotide probes on a gold surface. On the basis of the tetrahedral structure of tripod, the tripodal thiol derivatives were bonded upright to the gold substrate, which would control the orientation of oligonucleotide probes. When the gold substrate with oligonucleotide probes tethered using the thiol derivatives was exposed to deionized water at higher temperatures, the tripodal interface molecules were attached to the gold surface more stably than the single contact molecules. The DNA chip platform combined with the functional interface molecule is suitable for a reproducible, inexpensive, and high-throughput detection system for genetic analyses in clinical diagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号