首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The melting and the crystallization of-irradiated (doses: 0–6Mrad) ultra-high molecular weight nascent polyethylene (UHMWPE) and high density nascent polyethylene with normal molecular weight (NMWPE) were investigated by DSC. The heat of melting of the nascent UHMWPE (DSC degree of crystallinity, respectively) increases up to a dose of 3 Mrad, after which it slightly decreases. The heat of the second melting of UHMWPE and of the first and second melting of NMWPE increases slightly up to a dose of 3 Mrad, after which it does not change. The X-ray degree of crystallinity of the nascent non-irradiated and irradiated polymers was 0.62±0.02. The calorimetric crystallinity was compared to the X-ray one. The results show that radiation does not affect the polymer crystallinity, but influences the thermodynamic heat of melting. The increase ofH m vs. dose in UHMWPE is explained in terms of processes of tie molecule scission within the amorphous regions and on the surface of the crystals, which predominate over crosslinking up to a dose of 3 Mrad. That leads to an increase in the conformational mobility of the molecules and to an increase in the enthalpy, according to Peterlin's formula. The scission of the chains at the points of entangling of the tie molecules leads to a decrease in the temperature and to an increase in the enthalpy of crystallization of UHMWPE vs. dose. In NMWPE these effects are considerably weaker.  相似文献   

2.
The kinetics of nonisothermal crystallization and melting of blends of ultra-high molecular weight polyethylene (UHMWPE) and polyethylene high density with normal molecular weight (NMWPE) are investigated by means of differential scanning calorimetry (DSC). Mixing the components at a temperature below the flow temperature of UHMWPE (215 °C) results in increased crystallization/melting rates of the individual components in the blends above the corresponding additive values. The morphological observations of the blends, carried out by means of polarization microscopy, show that a strong boundary of both types of structures (UHMWPE non-flowing aggregates and NMWPE spherulite structures) does not exist. The NMWPE spherulites' dimensions decrease on increasing the UHMWPE concentration in the blends, but their number increases. The facilitation of the crystallization/melting of the components in the blends is explained in terms of mutual influence exhibited by the components with respect to each other. It is due to the inner stresses in nonflowing UHMWPE characterized with a lot of entangled tie molecules and to the partial co-crystallization of NMWPE molecules with the flowing part of UHMWPE. At mixing temperatures above 215 °C the melting/crystallization integral kinetic curves have only one linear part in contrast to these of the same blend (11 ratio of components), prepared at 190 °C. The rates of melting/crystallization remain almost constant with the increase of the mixing temperatures.  相似文献   

3.
The kinetics of a nonisothermal crystallization and melting of irradiated with dose of 6 Mrad blends of an ultra-high molecular-weight polyethylene (UHMWPE) and a high-density polyethylene with normal molecular weight (NMWPE) is investigated by means of DSC. The blends have been prepared at temperature below the flow temperature of UHMWPE: The enthalpies of melting of the polyethylenes increase, while those of their blends decrease after irradiation. The enthalpies of crystallization of the pure polyethylenes are higher, while those of their blends almost do not change or are a bit higher after irradiation. The rates of a nonisothermal crystallization and melting of the polyethylenes increase, while those of the polyethylenes in the blends decrease after irradiation. Thermomechanical measurements under constant load in wide-temperature interval of irradiated polyethylenes and their blends have been made. A high-elastic plateau in viscous-liquid state is established on the thermomechanical curves of UHMWPE, and the blends with high content of UHMWPE. On the basis of results obtained assumptions have been made about the processes taking place in the blends under the action of irradiation, as well as about the character of the mutual influence between the components in the process of irradiation.  相似文献   

4.
Cross-linking of ultra-high molecular weight polyethylene was performed with electron-beam irradiation in the range of radiation dose from 12 to 96 Mrad under nitrogen. Dry gel films and melt films were used as specimens. Two kinds of cross-linked specimens could be kept at 200°C for a prolonged time in an undeformed state and this tendency was independent of radiation dose. The elongation of the gel films hampered the heat-resistant effect and the drawn specimens were broken at temperatures lower than 175 °C. The elongation of the melt films could not be realized, because of a marked fixation of chains in the fiber network, even at a dose of 12 Mrad.  相似文献   

5.
The influence of the temperature on the mechanical properties of gel-spun hot-drawn ultra-high molecular weight polyethylene fibers has been investigated.From these experiments two different fracture mechanisms could be distinguished. The results indicate that above 20C a stress-induced orthorhombic-hexagonal phase transition is responsible for fiber failure. In the hexagonal or rotator phase the chains can easily slip past one another and fiber fracture is initiated by creep. Below 20C the phase transition cannot be introduced because the stress needed for the phase transition would exceed the covalent-bond strength in the polyethylene chain. The strength temperature data of the low temperature region was treated with Zhurkov's kinetic concept, leading to a bond-fracture activation energy of 160 kj/mol and an activation volume of 0.01 nm3. These values, together with the data from irradiation and shrinkage experiments, indicated that in the low temperature region fiber failure might be initiated by the fracture of trapped entanglements instead of that by overstressed, taut tie molecules.  相似文献   

6.
It was found that polyethylene gels in solvents such as benzene, toluene, xylene, decalin, tetralin, tetrachloroethylene, 1,1,2,2-tetrachloroethane, and chlorobenzene are effective for adhesion of a pair of polyethylene plates. In particular, the adhesion strength of polyethylene gels in decalin, tetralin and tetrachloroethylene was strong enough for practical use.Adhesive effect appears due to local dissolution of the surface of polyethylene plate in contact with the gel with increasing temperature, and subsequent recrystallization.  相似文献   

7.
The phase separation behavior of ternary blends of two homopolymers, PMMA and PS, and a block copolymer of styrene and methylmethacrylate, P(S-b-MMA), was studied. The homopolymers were of equal chain length and were kept at equal amounts. Two copolymers were used with blocks of equal length, which exceeded or equaled that of the homopolymer chains. Varied was the copolymer contentf. Films were cast from toluene, which is a nonselective solvent. The morphologies of the cast films were compared with the structure of the critical fluctuations in solution, which were calculated in mean field approximation. The axis of blend compositionsf can be divided into parts of dominating macrophase and microphase separation. Above a transition concentrationf o, all copolymer chains are found in phase interfaces. Belowf o, part of them form micelles within the homopolymer phases.  相似文献   

8.
The melting and the crystallization of blends of ultra-high molecular weight polyethylene (UHMWPE) and polyethylene high density with normal molecular weight (NMWPE) are investigated by means of differential scanning calorimetry (DSC). Mixing the components at a temperature below the flow temperature of UHMWPE (215 °C) results in segregated melting and crystallization. The segregated melting and crystallization temperatures of both components do not depend on composition of the blend. The extreme enthalpy dependence on blend composition is explained in terms of mutual influence exhibited by the components with respect to each other. It is due to the inner stresses in nonflowing UHMWPE characterized with a lot of entangled tie molecules. Mixing the components above the flow temperature of UHMWPE results in only one peak of melting and crystallization respectively. Complete mixing and probably co-crystallization between the components takes place on mixing NMWPE with flowing UHMWPE.  相似文献   

9.
Data published by La Mantia et al. [1] on dielectric dispersion and loss in polyethylene/nylon 6 blends are analyzed in terms of dielectric mixture formulae. It is shown that an ohmic interfacial polarization process can not be responsible for the unexpected increase of and values observed in these blends at high temperatures. The observed phenomena are tentatively attributed to space charge processes at the electrodes or to other defects dipole mechanisms.  相似文献   

10.
Compatibility of the polycarbonates of bisphenol A (PC) and tetramethyl bisphenol A (TMPC) was studied in glassy films cast from CH2Cl2 at room temperature, and above the glass-transition temperature. Blends with different compositions and of different molecular weights were analyzed by DSC and small-angle neutron scattering (SANS). Solution studies were made with light scattering and microscopy. Some of the blend films were two-phased when cast at room temperature, but all films were one-phased in equilibrium above the glass transition. The SANS data demonstrated that phase separation in the cast films was not caused by inherent incompatibility of PC and TMPC, but was induced by the solvent CH2Cl2. The effect is caused by a closed miscibility gap in the ternary solution system PC/TMPC/CH2Cl2.  相似文献   

11.
Concentration fluctuations in polymer blends and their change after a temperature jump were studied by time-dependent small angle X-ray scattering experiments. Measurements were conducted on homogeneous mixtures of polystyrene and a partially brominated derivative. Structure factors in thermal equilibrium show the form given by the random phase approximation, thus enabling a direct determination of the-parameter and the mean radius of gyration. TheT-dependence of can be understood as the result of superposed enthalpic contributions and a free volume term. In theT-jump experiments, samples were quenched to temperatures near Tg. Relaxation occurs on the time scale of minutes and is nonexponential, becoming slower with time. Initial relaxation rates increase with increasing scattering vectorsq in accordance with theoretical predictions.  相似文献   

12.
Adhesive effect of polyethylene moldings by use of high density polyethylene gels in organic solvents such as decalin, tetralin, ando-dichlorobenzene was investigated by shearing tests, electron microscope, and DSC measurements. All of the gels showed such a strong adhesive strength over 36 kg/cm2 that polyethylene plates of 3 mm in thickness gave rise to necking sufficient for practical use, when heated at 120 °C for 2 h. In particular, the gel in tetralin showed a strong adhesive strength when heated at 110 °C. It was found that adhesive strength increases with the heating temperature; the temperatures at which adhesive strength begins to increase differ depending on the type of polyethylene sample and solvent. It is apparent that polyethylene gels exhibit an adhesive effect when they are heated at higher temperatures than the gel melting temperatures, and that the closer the SP values of solvents used for the gelation are to the molded polyethylene, the stronger the adhesion of the polyethylene molding.  相似文献   

13.
Differential scanning calorimetry (DSC) and thermo-optical analysis (TOA) were applied to study the phase transitions phenomena of thermotropic liquid crystalline polymer and its blends with polycarbonate. It was found that both methods are complementary. Glass transition temperatures of the blends of polycarbonate with liquid crystalline polymer were measured and discussed.  相似文献   

14.
Adhesive effect of low density polyethylene (LDPE) gels in organic solvents such as decalin, tetralin, ando-dichlorobenzene on high density polyethylene (HDPE) moldings has been investigated by shearing tests, electron microscopy, and DSC measurements. When heated at 110°C for 2 h, all of the gels showed strong adhesive strengths around 30 kg/cm2, which is sufficiently strong for practical uses. It has been found that the adhesive strength increases with the heating temperature and that the temperature at which the heated gel begins to exhibit the adhesive effect depends upon solvents and is about 30° lower than that of the HDPE gels.  相似文献   

15.
Melt spinning experiments of polyethylene, using a high quenching rate have been carried out. Molecular weight has been varied. From measurements of the mechanical properties of the monofilaments produced it is concluded that melt history influences the solid state behavior. This is reflected in the hypothesis of a transference of knots, preexisting in the melt into the solid state. Measurements of the elastic recovery allow to offer an interpretation, in which this network of knots does not percolate, until a critical value of the molecular weightM c knot105 is surpassed. The possible influence of these knots on the mobile entanglements is discussed.On leave from the Institut für Technische und Makromolekulare Chemie, Universität Hamburg, Hamburg, Germany.  相似文献   

16.
The deformation and fracture behavior of sulphonated polystyrene ionomers, and of blends of these with polystyrene have been investigated. The microstructure of the ionomer, which varies with ion content, appears to have a significant effect on mechanical properties. Both tensile strength and toughness increase appreciably at ion contents near 5 mol%, where clusters become dominant over ion pairs and multiplets. In blends of the ionomers and polystyrene, phase separation occurs and the ionomer component appears in the form of fine particles dispersed in the polystyrene matrix. These particles possess a greater effective entanglement density than the matrix, as a result of ionic crosslinking, and they provide reinforcement against early craze breakdown and fracture. Tensile strength and fracture energy increase rapidly as the ionomer concentration in the blend is increased and they become essentially independent of blend ratio above about 10 wt% of the ionomer. Tests carried out on thin film specimens of the blends show that the dispersed ionomer particles adhere well to the matrix and contribute to the fracture energy both by inducing matrix crazing and by internal fibrillation within the particles.Dedicated to Professor Hans-Henning Kausch on the occasion of his 60th birthday.  相似文献   

17.
The compressive stress-strain behavior of biaxially oriented polyethylene (PE), obtained by pressing uniaxially oriented samples, is described with the aid of the van der Waals equation of state. Results are discussed in terms of two parameters: the biaxiality (B) and the biaxial draw ratio (), which offer a measure of the strain along the two principal directions and of the average draw ratio on the film plane, respectively. Comparison of experimental and calculated data indicates that after compression up to very large deformations the maximum average strain ( m ), which is proportional to the square root of the chain length of the network, remains constant. This result supports the view that the network of entanglements is not destroyed after compression. Experiments carried out on isotropic melt crystallized PE show the presence of a network having a not very different chain length. Finally, it is shown that the segment length of this network is close to the X-ray long period of the initial structure. This result implies the existence of a high density of entanglements (two entanglements every three adjacent lamellae), which are rejected into the defective layer of the crystals.  相似文献   

18.
Ultra-high molecular weight polyethylene/iron composites were investigated. The specimens were obtained by pressing in a steel die and sintering at different temperatures. By means of porosimetry, microscopy, microhardness, density, and partial volumes of the components it is shown that there are no microcavities. The microhardness does not depend upon the weight % content of the metal in the composites. It also neither depends on the pressure nor the temperature of sintering. For low metal content within the composites, microhardness Mayer equations are linear. For high metal content the dependence is nonlinear. With the increasing of the iron content tensile strength weakly decreases. However, plane-strain compression, dimension steadiness, Vicat softening temperature, and tribometric characteristics of the composites are improved. It is shown that the polymer is a well-dispersive medium. The particles of the components have a good mechanical compatibility. The polymer wets the surface of the iron; this is probably connected with the surface oxidation of the metal particles.  相似文献   

19.
The microhardness of a series of melt crystallized samples of linear polyehtylene was investigated in a wide range of molecular weights. The x-ray long period was analyzed to study the variation of the hardness-derived constantb as a function of molecular weight (M ). It is pointed out thatb offers a measure of the hardness depression due to the finite thickness of the lamellar crystals. The data obtained show that the increase and final leveling-off (forM 200 000) ofb withM parallels the concurrent increase of the surface free energy, as derived from DSC experiments. Results are discussed using the concept og chain folded lamellae as thermodynamically stable non-homogeneous microphases. Comparison of experimental and calculated data supports the view that the number of molecular entanglements, segregated onto the defective surface boundary of the heterogeneous crystals influence the shearing mechanism within the mesocrystals and thereby control the yield behavior of the material.  相似文献   

20.
Statistical poly block copolymers of polyamide with polyethyleneoxide are investigated. The regularities governing the formation of their phase structure depending on the composition, temperature, and prehistory of the system are established. The character of crystallization of both blocks is shown to be due to their mutual solubility in the melt. Some peculiarities of microphase crystallization in PA/PEO block copolymers are revealed. It is found that, depending on the character of phase separation in the system, a PEO block may be crystallized either unimodally or in two well-separated temperature ranges.Dedicated to Prof. W. Pechhold on the occasion of his 60th birthday.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号