首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Long-term clinical success of endosseous dental implants is critically related to a wide bone-to-implant direct contact. This condition is called osseointegration and is achieved ensuring a mechanical primary stability to the implant immediately after implantation. Both primary stability and osseointegration are favoured by micro-rough implant surfaces which are obtained by different techniques from titanium implants or coating the titanium with different materials. Host bone drilled cavity is comparable to a common bone wound. In the early bone response to the implant, the first tissue which comes into contact with the implant surface is the blood clot, with particular attention to platelets and fibrin. Peri-implant tissue healing starts with an inflammatory response as the implant is inserted in the bone cavity, but an early afibrillar calcified layer comparable to the lamina limitans or incremental lines in bone is just observable at the implant surface both in vitro than in vivo conditions. Just within the first day from implantation, mesenchymal cells, pre-osteoblasts and osteoblasts adhere to the implant surface covered by the afibrillar calcified layer to produce collagen fibrils of osteoid tissue. Within few days from implantation a woven bone and then a reparative trabecular bone with bone trabeculae delimiting large marrow spaces rich in blood vessels and mesenchymal cells are present at the gap between the implant and the host bone. The peri-implant osteogenesis can proceed from the host bone to the implant surface (distant osteogenesis) and from the implant surface to the host bone (contact osteogenesis) in the so called de novo bone formation. This early bone response to the implant gradually develops into a biological fixation of the device and consists in an early deposition of a newly formed reparative bone just in direct contact with the implant surface. Nowadays, senile and post-menopausal osteoporosis are extremely diffuse in the population and have important consequences on the clinical success of endosseous dental implants. In particular the systemic methabolic and site morphological conditions are not favorable to primary stability, biological fixation and final osseointegration.

An early good biological fixation may allow the shortening of time before loading the implant, favouring the clinical procedure of early or immediate implant loading. Trabecular bone in implant biological fixation is gradually substituted by a mature lamellar bone which characterizes the implant ossoeintegration. As a final consideration, the mature lamellar bone observed in osseointegrated implants is not always the same as a biological turnover occurs in the peri-implant bone up to 1 mm from the implant surface, with both osteogenesis and bone reabsorption processes.  相似文献   


2.
骨质的定期检测对骨质疏松的防治至关重要。本文研究了骨质疏松对超声导波在人体长骨中传播的影响。提出采用多尺度小波变换方法对接收到的导波信号进行处理,通过分析在不同传播距离下高阶小波细节分量所占信号总能量的变化,来判断是否患有骨质疏松症。在13位志愿者的小腿胫骨上进行超声测量,得到导波信号。经多尺度小波变换方法的分析处理结果显示在13位志愿者中,有7位志愿者的超声导波信号随着传播距离的改变,其主要频率成分发生了明显的变化,显示这7位志愿者患有骨质疏松症。这一诊断结果与X射线技术诊断结果相比,准确率可以达到92.3%,表明本文所提出的利用小波多尺度变换方法对长骨进行超声诊断具有较好的潜力。  相似文献   

3.
The increasing use of densitometric devices for assessing bone fragility has progressively strengthened the assumption that mass is the most important property determining bone mechanical competence. Nevertheless, structure and microarchitecture are relevant aspects of bone strength. The study of microarchitecture is based on the measure of width, number, and separation of trabeculae as well as on their spatial organization. There are several methods to assess bone architecture, particularly at the trabecular level. In particular, histomorphometry, based on the use of optical microscopy and on the principles of quantitative histology and stereology, evaluates microarchitecture two-dimensionally, even if these measures appear well correlated to the three-dimensional structure and properties of bone. In addition, new computerized methods allow the acquisition of more sophisticated measurements by means of a digitizer have been introduced to integrate the use of the microscope. These methods supply information on trabecular width as well as on its distribution and on the organization of the trabeculae in the marrow space.

Microarchitecture seems to be a determinant of bone fragility independent of bone density and it is important for understanding the mechanisms of bone fragility as well as the action of the drugs used to prevent osteoporotic fractures. Several in vivo studies (on animals and humans) can provide an additional interpretation for the anti-fracture effect of such drugs. For instance, bisphosphonates and parathyroid hormone seem to preserve or even improve microarchitecture. The challenge for the future will be to evaluate bone quality in vivo with the same or better resolution and accuracy than the invasive methods used today.  相似文献   


4.
Osteoporosis is a progressive bone disease,which is characterized by a decrease in the bone mass and deterioration in bone micro-architecture.In theory,photoacoustic(PA) analysis has the potential to obtain the characteristics of the bone effectively.In this study,we try to compare the PA spectral analysis(PASA) method with the quantitative ultrasound(QUS) method in osteoporosis assessment.We compare the quantified parameter slope from the PASA and broadband ultrasound attenuation from QUS among different bone models,respectively.Both the simulation and ex vivo experiment results show that bone with lower bone mineral density has the higher slope in the PASA method.Our comparison study proves that the PASA method has the same efficiency as QUS in osteoporosis assessment.  相似文献   

5.
Diabetes mellitus affects bone metabolism and leads to osteopenia and osteoporosis, but its pathogenic mechanism remains unknown. To address this problem, mineral element of bone was analyzed in experimental diabetic osteoporosis model. Male Wistar rats were randomly divided into streptozotocin (STZ)-induced diabetic group (n=5) and control group (n=5). The experiment lasted 68 days and at the end of the experiment, femoral bone mineral density (BMD) was measured by dual-energy X-ray absorptiometry and element content in femur of animals was determined by synchrotron radiation X-ray fluorescence (SRXRF) microprobe analysis technique. Results showed that femoral BMD in diabetic group was significantly lower than that in control (P<0.01). Relative mineral content of calcium (Ca), phosphorus (P) and zinc (Zn) in diabetic femurs decreased significantly compared to controls. And strontium (Sr) in diabetics reduced 11% (P=0.09). Relative content of sulfur (S) in average was statistically higher (P<0.01) in diabetics than that in controls. But no obvious difference was observed in relative content of chromium (Cr), iron (Fe), copper (Cu), and lead (Pb) between the two groups. Statistical analysis revealed that Ca correlated positively with P (R=0.85 and P<0.001), with Sr (R=0.38 and P<0.05) and with Zn (R=0.37 and P<0.05). Whereas, Zn correlated negatively with S (R=-0.40 and P<0.05). Our results reveal that loss of minerals accounts for the BMD reduction in diabetics.  相似文献   

6.
Recent developments in high-resolution MR imaging techniques have opened up new perspectives for structural characterization of trabecular bone by non-invasive methods. In this study, 3-D MR imaging was performed on 17 healthy volunteers and 6 osteoporotic patients. Two different MR sequences were used to evaluate the impact on MR acquisition on texture analysis results. Images were analyzed with four automated methods of texture analysis (grey level histogram, cooccurrence, runlength and gradient matrices) enabling quantitative analysis of grey level intensity and distribution within three different regions of interest (ROI). Texture analysis is not very frequently used since the interpretation of the large number of calculated parameters is difficult. We applied multiparametric data analyses such as principal component analysis (CFA) and hierarchical ascending classification (HAC) to determine the relevant parameters to differentiate between three sets of images (healthy young volunteers, healthy postmenopaused and osteoporotic patients). The results suggest that relevant texture information (depending on the ROI localization in the calcaneus) can be extracted from calcaneus MR images to evaluate osteoporosis and age effects on trabecular bone structure if strictly the same acquisition sequences are used for all patients' examination.  相似文献   

7.
The infrared (IR) and Raman spectra of the osteoporosis drug alendronate in the monosodium trihydrate alendronate crystal were measured. In order to interpret them, density functional theory (DFT) calculations for the solvated alendronate molecule were performed following the structural features revealed by X‐ray data. A comparison between the DFT‐calculated IR and Raman of the converged species and the measured spectra unveils relevant phosphate group signatures in the 400–1400 cm−1 wavenumber range, especially IR absorption bands at 1015, 1049, 1067, 1131, 1177, and 1235 cm−1, which were related to CP and OP bond length stretching, and Raman lines at 449, 661, and 969 cm−1, involving phosphate scissors and bond length vibrations. A comparison with experimental data of alendronate incorporated into hydroxyapatite (HAP) indicates that, for wavenumbers below 1500 cm−1, the interaction of alendronate with HAP does not affect significantly the alendronate vibrational spectra, while for the 1600–3000 cm−1 interval the interaction with HAP changes the normal mode wavenumbers by about −100 cm−1. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The lamellar structure of osteoporotic human trabecular bone was characterized experimentally by means of transmission electron microscopy (TEM). More specifically, the TEM was used to determine if trabecular bone exhibits similar lamellar structural motifs as cortical bone by analyzing unmineralized, mineralized and demineralized bone, and to study the influence of the osteocyte network on the lamellar structure of osteoporotic trabecular bone. Comparison with normal trabecular bone is included. This paper summarizes partial results of a larger study, which addressed the characterization of the hierarchical structure of normal versus osteoporotic human trabecular bone [Rubin, M.A., 2001. Multiscale characterization of the ultrastructure of trabecular bone in osteoporotic and normal humans and in two inbred strains of mice. MS Thesis, Georgia Institute of Technology.] at several structural scales.  相似文献   

9.
Commercial devices for the ultrasonic characterisation of bone normally report the broadband ultrasonic attenuation (BUA). This is the slope of the attenuation against frequency in some part of the frequency range 200–1000 kHz. The assumption is that the relationship is linear and hence independent of the frequency range selected. In this study the ultrasonic attenuation in the frequency range 200 to 800 kHz was measured with a variety of transducers in ten trabecular heel bone samples from elderly cadavers, assumed to be osteoporotic.

The results indicate that the attenuation fits better to a second order polynomial function of frequency, than to the linear fit. The use of a straight line fit is only satisfactory in the higher frequency ranges (above 400 kHz). The use of lower frequencies results in a significant measurement error caused by the combination of a poor signal to noise ratio and the departure from linearity and this is greatest for samples with low attenuation. In the worst cases this can amount to a 30% discrepancy between the BUA values measured over different frequency ranges.  相似文献   


10.
在超声背散射方法评价骨质的实际应用中,如何更为准确地判断测量对象是否为骨质疏松是一个重要问题。提出一种有监督学习的超声背散射评价方法,根据超声背散射离体实验的信号处理结果,对松质骨样本使用支撑向量机和自适应增强的有监督学习算法进行预测和分类。研究结果表明,有监督学习的超声背散射评价方法分类的准确率为80.00%~82.86%,并且对骨质疏松的样本具有较高的特异性(特异度>92.3%)。因此有监督学习的超声背散射评价方法具有有效性,评价效果优于现有的其它定量超声方法,对超声背散射方法的在体应用有一定帮助。  相似文献   

11.
Pomponlike La2(MoO4)3 microstructures assembled with single-crystalline nanoflakes have been facilely fabricated via a surfactant-assisted ultrasound route for the first time. Various synthesis conditions were examined, such as the surfactant concentration, the molecular structure of surfactants, and the pH value. The obtained pomponlike microstructures were characterized by X-ray diffraction (XRD), (field-emission) scanning electron microscopy [(FE)SEM], transmission electron microscopy (TEM), and nitrogen adsorption/desorption isotherms. It has been revealed that a minimum concentration of sodium dodecylsulfate (SDS) was required for the formation of pomponlike La2(MoO4)3 microstructures. When the SDS concentration is above 0.02 mol L−1, the pomponlike microstructures become more perfect, and the size is also increased with the increasing SDS concentration. Under the same sonication, similar pomponlike microstructures were obtained when a cationic surfactant, cetyltrimethyl ammonium bromide (CTAB), was used instead of the anionic surfactant SDS, indicating that the hydrophobic alkyl chains are an important factor for the formation of the pomponlike La2(MoO4)3 microstructures. It is also found that the pomponlike La2(MoO4)3 microstructures can only be obtained within an optimal pH range of 8.0–9.0 under sonication. Based on TEM, Fourier transform infrared spectroscopy (FT-IR) and solubilization experiment, a formation mechanism of pomponlike La2(MoO4)3 microstructures was proposed, in which the collaborative action of surfactants and sonication plays a key role. Furthermore, the porosity of the pomponlike La2(MoO4)3 microstructures were discussed.  相似文献   

12.
Trabecular bone structure and bone density contribute to the strength of bone and are important in the study of osteoporosis. Wavelets are a powerful tool in characterizing and quantifying texture in an image. The purpose of this study was to validate wavelets as a tool in computing trabecular bone thickness directly from gray-level images. To this end, eight cylindrical cores of vertebral trabecular bone were imaged using 3-T magnetic resonance imaging (MRI) and micro-computed tomography (microCT). Thickness measurements of the trabecular bone from the wavelet-based analysis were compared with standard 2D structural parameters analogous to bone histomorphometry (MR images) and direct 3D distance transformation methods (microCT images). Additionally, bone volume fraction was determined using each method. The average difference in trabecular thickness between the wavelet and standard methods was less than the size of 1 pixel size for both MRI and microCT analysis. A correlation (R) of .94 for microCT measurements and that of .52 for MRI were found for the bone volume fraction. Based on these results, we conclude that wavelet-based methods deliver results comparable with those from established MR histomorphometric measurements. Because the wavelet transform is more robust with respect to image noise and operates directly on gray-level images, it could be a powerful tool for computing structural bone parameters from MR images acquired using high resolution and thus limited signal scenarios.  相似文献   

13.
The present study aims to investigate the propagation of time-reversed Lamb waves in acrylic cylindrical tubes as cortical-bone-mimicking phantoms. Time-reversed Lamb waves could be successfully launched in 6 acrylic tubes with wall thicknesses from 2 to 12 mm by using a modified time reversal method. The group velocities of the time-reversed Lamb waves in the acrylic tubes were measured by using the axial transmission technique. They decreased very slightly with increasing wall thickness, showing good agreement with the theoretical group velocity of the A0 Lamb wave in the acrylic plate. These results suggest that the time-reversed Lamb waves in the acrylic tubes would essentially behave as the A0 Lamb wave, consistent with the behavior of the slow guided wave in long cortical bones. It is expected that the application of the time-reversed Lamb waves in long bones would enhance clinical potential of ultrasonic technologies for the diagnosis of osteoporosis.  相似文献   

14.
Osteoporosis is a bone disease with a variety of causes, leading to bone pain and fragility to fracture. Major treatment methods include nutrition therapy, exercise therapy, drug therapy and surgical treatment, among which exercise therapy, such as swimming, is the most effective. To investigate the optimal swimming therapy regime for postmenopausal women, the effects of eight weeks of different intensity swimming exercises were studied in rat models. After the swimming program, lumbar vertebrae were dissected from all the rats and scanned by synchrotron radiation computed tomography (SRCT). Histomorphometry analysis and finite‐element analysis were carried out on the trabecular structure of the L4 lumbar based on the acquired SRCT slices. Histomorphometry analysis showed that swimming can alleviate the decrease in bone strength induced by estrogen deficiency, and moderate‐intensity swimming was found to have the most significant effect.  相似文献   

15.
The modified Biot–Attenborough (MBA) model for acoustic wave propagation in porous media has been found useful to predict wave properties in cancellous bone. The present study is aimed at applying the MBA model to predict the dependence of phase velocity on porosity in cancellous bone. The MBA model predicts a phase velocity that decreases nonlinearly with porosity. The optimum values for input parameters of the MBA model, such as compressional speed cm of solid bone and phase velocity parameter s2, were determined by comparing the predictions with previously published measurements in human calcaneus and bovine cancellous bone. The value of the phase velocity parameter s2 = 1.23 was obtained by curve fitting to the experimental data for 53 human calcaneus samples only, assuming a compressional speed cm = 2500 m/s of solid bone. The root-mean-square error (RMSE) of the curve fit was 15.3 m/s. The optimized value of s2 for all 75 cancellous bone samples including 22 bovine samples was 1.42 with a value of 55 m/s for the RMSE of the curve fit. The latter fit was obtained by using of a value of cm = 3200 m/s. Although the MBA model relies on the empirical parameters determined from experimental data, it is expected that the model can be usefully employed as a practical tool in the field of clinical ultrasonic bone assessment.  相似文献   

16.
A Helmholtz-pair local transmit RF coil with an integrated four-element receive array RF coil and foot immobilization platform was designed and constructed for imaging the distal tibia in a whole-body 7T MRI scanner. Simulations and measurements of the B(1) field distribution of the transmit coil are described, along with SAR considerations for operation at 7T. Results of imaging the trabecular bone of three volunteers at 1.5T, 3T and 7T are presented, using identical 1.5T and 3T versions of the 7T four-element receive array. The spatially registered images reveal improved visibility for individual trabeculae and show average gains in SNR of 2.8× and 4.9× for imaging at 7T compared to 3T and 1.5T, respectively. The results thus display an approximately linear dependence of SNR with field strength and enable the practical utility of 7T scanners for micro-MRI of trabecular bone.  相似文献   

17.
A novel semi-empirical scattering model of trabecular bone facilitating its characterization and allowing optimization of the interrogating pulse-echo transducer performance was developed. The model accounts for spatial density distribution of the trabeculae and includes measurement conditions such as pressure–time waveform of the probing ultrasound wave, the emitted field structure, and the transfer function and limited bandwidth of the acoustic source operating in pulse-echo mode. These measurement conditions are of importance as they modify the scattered echoes, which in turn are linked to the micro-architecture of the bone. The bone was modeled by a random distribution of long and thin cylindrical scatterers having randomly varying diameters and mechanical properties, and oriented perpendicularly to the ultrasound beam axis. To mimic clinically encountered conditions the relevant empirical data obtained at 1 MHz were input to the model. The data included pulse-echo source pressure field distribution in the focal zone and the above mentioned transfer function. With these data the model allowed frequency dependent backscattering coefficient of the simulated bone structure and its statistical properties to be determined. The results obtained indicated that the computer simulation is of particular relevance in studying scattering properties of the cancellous bone and holds promise as a tool to determine the relationship between the physical dimensions and shape of the scatterers and for monitoring of osteoporosis. The results of simulations also indicated that the new bone model proposed is well suited to mimic clinically relevant conditions. In contrast to the existing bone models, which usually assume scatterers to be randomly distributed as infinitely long identical cylinders with a cross-section much smaller than the probing ultrasound wave, the new model includes two populations of scatterers having different physical dimensions and also allows the mechanical properties of the scatterers to be varied.  相似文献   

18.
Deep-level transient spectroscopy (DLTS), which is widely used to characterize deep impurity centers in semiconductors, assumes a single exponential wave form for the transient junction capacitance. When there are several closely spaced energy levels this assumption is no more valid, and the conventional DLTS may lead to errorneous results. To overcome this difficulty we propose here a novel method which we call the multi-exponential DLTS(MEDLTS). The transient wave form of the junction capacitance is directly analysed into multi-exponential compouents using the nonlinear least-squares analysis program DISCRETE developed by Provencher. The resolved time constants of these components are then displayed in the form of aT 2–1/T plot. According to the results of simulation with various parameters MEDLTS is shown quite effective to resolve closely spaced energy levels which can not be resolved by the conventional DLTS. As an example of the application of this method deep levels in Si: Au were investigated. The results have shown that a single peak in conventional DLTS actually consists of two adjacent levels with activation energies and capture cross-sectionsE B1=0.49 eV, B1=1.1×10–14cm2 andE B2=0.46 eV, B2=1.3×10–15 cm2 and with amplitude ratio 11.  相似文献   

19.
李凌  金贞兰  李斌 《物理学报》2011,60(4):48703-048703
头皮脑电时间序列的相关性是大脑皮层源的相位同步性的一种体现,因此对相位同步源进行定位,同时找到源对应的时间序列在脑成像研究领域具有重要意义.基于Rössler 模型提出仿真相位同步偶极子源的时间序列的方法,利用时间序列进行同心四层球头模型正演,获得仿真头皮脑电数据.提出了基于最大似然因子分析的相位同步脑电源的时-空动力学分析方法,对仿真和真实头皮脑电数据进行了验证,并与主成分分析法进行对比.仿真实验结果表明:最大似然因子分析法估计的时间序列与仿真源的时间序列具有更高的相关系数,同时估计源与仿真源 关键词: 脑电图 相位同步 因子分析 主成分分析  相似文献   

20.
An exergy analysis of possible regimes of energy supply to the air flow in the ramjet duct is carried out. A condition for the supply of a given heat amount to supersonic flow and a condition of the passage across the sound velocity are obtained for a duct with variable cross-sectional area. An analysis of the flow in a model ramjet duct at a pulsed-periodic energy supply is carried out. For a clear demonstration of possible schemes of heat supply in such a duct, a diagram in the temperature-exergy coordinates is proposed. A duct configuration in which the heat supply to supersonic flow is realized with regard for the limitation of the gas static temperature is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号