首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presented research evaluates the interaction between a single bubble and homogeneous turbulent flow using direct numerical simulation (DNS) approach. The homogeneous single-phase turbulence is numerically generated by passing a uniform flow through grid planes. The turbulence decay rate is compared with experiment-based correlation. The single phase turbulence is then used as an inflow boundary condition for a set of single bubble studies. By estimating the turbulent field around the fully resolved bubble, the effects of bubble deformability, turbulent intensity and relative velocity on the bubble-induced turbulence are investigated. The existence of bubble creates new vortices in the wake region and the enhancement of turbulence is observed in the region behind the bubble. The results show that the magnitude of the turbulence enhancement would increase as the bubble encounters larger liquid turbulent intensity or higher relative velocity. Set of bubble Weber numbers from 0.34 to 3.39 are used to investigate the effect of bubble deformability. The more deformable bubble is the higher the increase in the magnitude of the turbulence enhancement behind the bubble. This research provides systematic insight on the bubble-induced turbulence (BIT) mechanism and is important for multiphase computational fluid dynamics (M-CFD) closure model development.  相似文献   

2.
3.
Experimental dual plane particle image velocimetry (PIV) data are assessed using direct numerical simulation (DNS) data of a similar flow with the aim of studying the effect of averaging within the interrogation window. The primary reason for the use of dual plane PIV is that the entire velocity gradient tensor and hence the full vorticity vector can be obtained. One limitation of PIV is the limit on dynamic range, while DNS is typically limited by the Reynolds number of the flow. In this study, the DNS data are resolved more finely than the PIV data, and an averaging scheme is implemented on the DNS data of similar Reynolds number to compare the effects of averaging inherent to the present PIV technique. The effects of averaging on the RMS values of the velocity and vorticity are analyzed in order to estimate the percentage of turbulence intensity and enstrophy captured for a given PIV resolution in turbulent boundary layers. The focus is also to identify vortex core angle distributions, for which the two-dimensional and three-dimensional swirl strengths are used. The studies are performed in the logarithmic region of a turbulent boundary layer at z + = 110 from the wall. The dual plane PIV data are measured in a zero pressure gradient flow over a flat plate at Re τ = 1,160, while the DNS data are extracted from a channel flow at Re τ = 934. Representative plots at various wall-normal locations for the RMS values of velocity and vorticity indicate the attenuation of the variance with increasing filter size. Further, the effect of averaging on the vortex core angle statistics is negligible when compared with the raw DNS data. These results indicate that the present PIV technique is an accurate and reliable method for the purposes of statistical analysis and identification of vortex structures.  相似文献   

4.
We show that direct numerical simulation will yield turbulent flowfields which are strongly dependent upon computer hardware and software. A computed flow trajectory is apparently uncorrelated to the true solution of a flowfield if it is allowed to evolve over a long time, and hence is called a pseudo-orbit. This is due to the trajectory instability of chaotic turbulent flows. All is not lost, however; a long-time average of flow quantities can now be computed using a pseudo-orbit by invoking the shadowing lemma. For the inviscid flow, this time average tends to approach asymptotically the phase average as predicted by the classical ergodic theorem. Although the inviscid two-dimensional flow has no real physical importance, the existence of canonical (equilibrium) distribution permits us to examine the accuracy of time averaging based on the pseudo-orbit and its inherent limitations.This work was supported by AFOSR task 2304N1.  相似文献   

5.
In order to accurately assess measurement resolution and measurement uncertainty in DPIV and TPIV measurements, a series of simulations were conducted based on the flow field from a homogeneous isotropic turbulence data set (Re λ = 141). The effect of noise and spatial resolution was quantified by examining the local and global errors in the velocity, vorticity and dissipation fields in addition to other properties of interest such as the flow divergence, topological invariants and energy spectra. In order to accurately capture the instantaneous gradient fields and calculate sensitive quantities such as the dissipation rate, a minimum resolution of x/η = 3 is required, with smoothing recommended for the TPIV results to control the inherently higher noise levels. Comparing these results with experimental data showed that while the attenuation of velocity and gradient quantities was predicted well, higher noise levels in the experimental data led increased divergence.  相似文献   

6.
7.
In this paper the results of an international collaborative test case relative to the production of a direct numerical simulation and Lagrangian particle tracking database for turbulent particle dispersion in channel flow at low Reynolds number are presented. The objective of this test case is to establish a homogeneous source of data relevant to the general problem of particle dispersion in wall-bounded turbulence. Different numerical approaches and computational codes have been used to simulate the particle-laden flow and calculations have been carried on long enough to achieve a statistically steady condition for particle distribution. In such stationary regime, a comprehensive database including both post-processed statistics and raw data for the fluid and for the particles has been obtained. The complete datasets can be downloaded from the web at http://cfd.cineca.it/cfd/repository/. In this paper the most relevant velocity statistics (for both phases) and particle distribution statistics are discussed and benchmarked by direct comparison between the different numerical predictions.  相似文献   

8.
Yu  Ming  Fu  Yalu  Liu  Pengxin  Tang  Zhigong  Yuan  Xianxu  Xu  Chunxiao 《Acta Mechanica Sinica》2022,38(9):1-16
Acta Mechanica Sinica - Bogies are responsible for a significant amount of aerodynamic resistance and noise, both of which negatively affect high-speed train performance and passenger comfort. In...  相似文献   

9.
10.
The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence.The spectra are calculated from direct numerical simulation(DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the nearwall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Reτ can be as low as 1000. The properties of the inner and outer peaks in the spanwise spectra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number,which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.  相似文献   

11.
Active control of multiscale features in wall-bounded turbulence   总被引:2,自引:1,他引:1  
This study experimentally investigates the impact of a single piezoelectric(PZT)actuator on a turbulent boundary layer from a statistical viewpoint.The working conditions of the actuator include a range of frequencies and amplitudes.The streamwise velocity signals in the turbulent boundary layer flow are measured downstream of the actuator using a hot-wire anemometer.The mean velocity profiles and other basic parameters are reported.Spectra results obtained by discrete wavelet decomposition indicate that the PZT vibration primarily influences the near-wall region.The turbulent intensities at different scales suggest that the actuator redistributes the near-wall turbulent energy.The skewness and flatness distributions show that the actuator effectively alters the sweep events and reduces intermittency at smaller scales.Moreover,under the impact of the PZT actuator,the symmetry of vibration scales’velocity signals is promoted and the structural composition appears in an orderly manner.Probability distribution function results indicate that perturbation causes the fluctuations in vibration scales and smaller scales with high intensity and low intermittency.Based on the flatness factor,the bursting process is also detected.The vibrations reduce the relative intensities of the burst events,indicating that the streamwise vortices in the buffer layer experience direct interference due to the PZT control.  相似文献   

12.
13.
Based on direct numerical simulation (DNS) data of the straight ducts, namely square and rectangular annular ducts, detailed analyses were conducted for the mean streamwise velocity, relevant velocity scales, and turbulence statistics. It is concluded that turbulent boundary layers (TBL) should be broadly classified into three types (Type-A, -B, and -C) in terms of their distribution patterns of the time-averaged local wall-shear stress (\(\tau _\mathrm{w} )\) or the mean local frictional velocity (\(u_\tau )\). With reference to the Type-A TBL analysis by von Karman in developing the law-of-the-wall using the time-averaged local frictional velocity (\(u_\tau )\) as scale, the current study extended the approach to the Type-B TBL and obtained the analytical expressions for streamwise velocity in the inner-layer using ensemble-averaged frictional velocity (\(\bar{{u}}_\tau )\) as scale. These analytical formulae were formed by introducing the general damping and enhancing functions. Further, the research applied a near-wall DNS-guided integration to the governing equations of Type-B TBL and quantitatively proved the correctness and accuracy of the inner-layer analytical expressions for this type.  相似文献   

14.
Experiments were conducted in a water tunnel by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The Reynolds number Reθ is 2460 on the base of momentum thickness. According to the physical mechanism of the stretch and compression of multi-scale vortex structures in the wall-bounded turbulence, the topological characteristics of turbulence statistics in logarithmic layer were illustrated by local-averaged velocity structure function. During coherent structures bursting, results reveal that the topological structures of velocity gradients, velocity strain rates and vorticities behave as antisymmetric quadrupole modes. A three-layer antisymmetric quadrupole vortex packet confirms that there is a tight relationship between the outer layer and the near-wall layer.  相似文献   

15.
Density stratification has a strong impact on turbulence in geophysical flows. Stratification changes the spatial turbulence spectrum and the energy transport and conversion within the spectrum. We analyze these effects based on a series of direct numerical simulations (DNS) of stratified turbulence. To facilitate simulations of real-world problems, which are usually beyond the reach of DNS, we propose a subgrid-scale turbulence model for large eddy simulations of stratified flows based on the Adaptive Local Deconvolution Method (ALDM). Flow spectra and integral quantities predicted by ALDM are in excellent agreement with direct numerical simulation. ALDM automatically adapts to strongly anisotropic turbulence and is thus a suitable tool for studying turbulent flow phenomena in atmosphere and ocean.  相似文献   

16.
By comparing the energy spectrum and total kinetic energy, the effects of numerical errors (which arise from aliasing and discretization errors), subgrid-scale (SGS) models, and their interactions on direct numerical simulation (DNS) and large eddy simulation (LES) are investigated. The decaying isotropic turbulence is chosen as the test case. To simulate complex geometries, both the spectral method and Pade compact difference schemes are studied. The truncated Navier-Stokes (TNS) equation model with Pade discrete filter is adopted as the SGS model. It is found that the discretization error plays a key role in DNS. Low order difference schemes may be unsuitable. However, for LES, it is found that the SGS model can represent the effect of small scales to large scales and dump the numerical errors. Therefore, reasonable results can also be obtained with a low order discretization scheme.  相似文献   

17.
A numerical method developed for simulating three-dimensional incompressible boundary layer flow is presented. K-type transition up to the two-spike stage is simulated, and flow topologies at various stages of transition are determined. Comparison with flow topologies from other simulations of turbulent and transitioning flows is made. Financial support provided by Air Operations Division, Aeronautical and Maritime Research Laboratory, Defence Science and Technology Organisation, Australia.  相似文献   

18.
The complementary nature of PIV and LDV, in readily available configurations, is demonstrated along with their strengths and limitations by measurements in the flow over a two-dimensional dune in an open channel. This flow field is well suited to evaluate the relative performance of the two techniques as it contains much of the complexity found in practical hydraulic engineering. Agreement in the data obtained with the two techniques, even in regions of flow reversal and high shear, show that PIV is fast reaching a stage where it can be applied with a level of confidence similar to LDV.  相似文献   

19.
This study utilized the particle image velocimetry (PIV) technique, non-invasively near the wall, in the developing region, for the measurements of laminar and turbulent properties during circulation of Geldart B type particles in the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) riser. A novel method was used to measure axial and radial laminar and turbulent solids dispersion coefficients using autocorrelation technique.The instantaneous and hydrodynamic velocities for the solid phase were measured simultaneously in the axial and radial directions using a CCD camera, with the help of a colored rotating transparency. The measured properties, such as laminar and Reynolds stresses, laminar and turbulent granular temperatures, laminar and turbulent dispersion coefficients and energy spectra exhibited anisotropy. The mixing in the riser was on the level of clusters. The total granular temperatures were in reasonable agreement with the literature values. However, the axial and radial solids dispersion coefficients measured near the wall were slightly lower than the radially averaged values in the literature.  相似文献   

20.
The effects of the Prandtl number on stratified rotating turbulence have been studied in homogeneous turbulence by using direct numerical simulations and a rapid distortion theory. Fluctuations under strong stable-density stratification can be theoretically divided into the WAVE and the potential vorticity (PV) modes. In low-Prandtl-number fluids, the WAVE mode deteriorates, while the PV mode remains. Imposing rotation on a low-Prandtl-number fluid makes turbulence two-dimensional as well as geostrophic; it is found from the instantaneous turbulent structure that the vortices merge to form a few vertically-elongated vortex columns. During the period toward two-dimensionalization, the vertical vortices become asymmetric in the sense of rotation. Communicated by S. Obi PACS 47.55.Hd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号