首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prove the existence of a global heat flow u : Ω ×  \mathbbR+ ? \mathbbRN {\mathbb{R}^{+}} \to {\mathbb{R}^{N}}, N > 1, satisfying a Signorini type boundary condition u(∂Ω ×  \mathbbR+ {\mathbb{R}^{+}}) ⊂  \mathbbRn {\mathbb{R}^{n}}), n \geqslant 2 n \geqslant 2 , and \mathbbRN {\mathbb{R}^{N}}) with boundary [`(W)] \bar{\Omega } such that φ(∂Ω) ⊂ \mathbbRN {\mathbb{R}^{N}} is given by a smooth noncompact hypersurface S. Bibliography: 30 titles.  相似文献   

2.
In this paper, we mainly study polynomial generalized Vekua-type equation _boxclose)w=0{p(\mathcal{D})w=0} and polynomial generalized Bers–Vekua equation p(D)w=0{p(\mathcal{\underline{D}})w=0} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} where D{\mathcal{D}} and D{\mathcal{\underline{D}}} mean generalized Vekua-type operator and generalized Bers–Vekua operator, respectively. Using Clifford algebra, we obtain the Fischer-type decomposition theorems for the solutions to these equations including (D-l)kw=0,(D-l)kw=0(k ? \mathbbN){\left(\mathcal{D}-\lambda\right)^{k}w=0,\left(\mathcal {\underline{D}}-\lambda\right)^{k}w=0\left(k\in\mathbb{N}\right)} with complex parameter λ as special cases, which derive the Almansi-type decomposition theorems for iterated generalized Bers–Vekua equation and polynomial generalized Cauchy–Riemann equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}. Making use of the decomposition theorems we give the solutions to polynomial generalized Bers–Vekua equation defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}} under some conditions. Furthermore we discuss inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}, and develop the structure of the solutions to inhomogeneous polynomial generalized Bers–Vekua equation p(D)w=v{p(\mathcal{\underline{D}})w=v} defined in W ì \mathbbRn+1{\Omega\subset\mathbb{R}^{n+1}}.  相似文献   

3.
We establish necessary and sufficient conditions under which a sequence x 0 = y 0 , x n+1 = Ax n  + y n+1 , n ≥ 0, is bounded for each bounded sequence { yn :n \geqslant 0 } ì { x ? èn = 1 D( An ) |supn \geqslant 0 || An x || < ¥ }\left\{ {y_n :n \geqslant 0} \right\} \subset \left\{ {\left. {x \in \bigcup\nolimits_{n = 1}^\infty {D\left( {A^n } \right)} } \right|\sup _{n \geqslant 0} \left\| {A^n x} \right\| < \infty } \right\}, where A is a closed operator in a complex Banach space with domain of definition D(A) .  相似文献   

4.
The secant map of an immersion sends a pair of points to the direction of the line joining the images of the points under the immersion. The germ of the secant map of a generic codimension-c immersion $X\!\!:{\mathbb R}^n \to {\mathbb R}^{n+c}The secant map of an immersion sends a pair of points to the direction of the line joining the images of the points under the immersion. The germ of the secant map of a generic codimension-c immersion X:\mathbb Rn ? \mathbb Rn+cX\!\!:{\mathbb R}^n \to {\mathbb R}^{n+c} at the diagonal in the source is a \mathbb Z2{\mathbb Z}_2 stable map-germ \mathbb R2n ? \mathbb Rn+c-1{\mathbb R}^{2n} \to {\mathbb R}^{n+c-1} in the following cases: (i) c≥ 2 and (2n,n + c − 1) is a pair of dimensions for which the \mathbb Z2{\mathbb Z}_2 stable germs of rank at least n are dense, and (ii) for generically immersed surfaces (i.e., n = 2 and any c≥ 1). In the latter surface case the A\mathbb Z2{\mathcal A}^{{\mathbb Z}_2}-classification of germs of secant maps at the diagonal is described and it is related to the A{\mathcal A}-classification of certain singular projections of the surfaces.  相似文献   

5.
An extension of a classical theorem of Rellich to the exterior of a closed proper convex cone is proved: Let Γ be a closed convex proper cone inR n and −Γ′ be the antipodes of the dual cone of Γ. Let be a partial differential operator with constant coefficients inR n, whereQ(ζ)≠0 onR niΓ′ andP i is an irreducible polynomial with real coefficients. Assume that the closure of each connected component of the set {ζ∈R niΓ′;P j(ζ)=0, gradP j(ζ)≠0} contains some real point on which gradP j≠0 and gradP j∉Γ∪(−Γ). LetC be an open cone inR n−Γ containing both normal directions at some such point, and intersecting each normal plane of every manifold contained in {ξ∈R n;P(ξ)=0}. Ifu∈ℒ′∩L loc 2 (R n−Γ) and the support ofP(−i∂/∂x)u is contained in Γ, then the condition implies that the support ofu is contained in Γ.  相似文献   

6.
We prove that every compact nilpotent ring R of characteristic p > 0 can be embedded in a ring of upper triangular matrices over a compact commutative ring. Furthermore, we prove that every compact topologically nilpotent ring R of characteristic p > 0, is embedded in a ring of infinite triangular matrices over \mathbbFpw(R)\mathbb{F}_{p}^{w(R)}.  相似文献   

7.
If ψ ∈ L2(R), Λ is a discrete subset of the affine groupA =R + ×R, and w: Λ →R + is a weight function, then the weighted wavelet system generated by ψ, Λ, and w is . In this article we define lower and upper weighted densities D w (Λ) and D w + (Λ) of Λ with respect to the geometry of the affine group, and prove that there exist necessary conditions on a weighted wavelet system in order that it possesses frame bounds. Specifically, we prove that if W(ψ, Λ, w) possesses an upper frame bound, then the upper weighted density is finite. Furthermore, for the unweighted case w = 1, we prove that if W(ψ, Λ, 1) possesses a lower frame bound and D w +−1) < ∞, then the lower density is strictly positive. We apply these results to oversampled affine systems (which include the classical affine and the quasi-affine systems as special cases), to co-affine wavelet systems, and to systems consisting only of dilations, obtaining some new results relating density to the frame properties of these systems.  相似文献   

8.
Let N be a compact simply connected smooth Riemannian manifold and, for p ∈ {2,3,...}, W 1,p (R p+1, N) be the Sobolev space of measurable maps from R p+1 into N whose gradients are in L p . The restriction of u to almost every p-dimensional sphere S in R p+1 is in W 1,p (S, N) and defines an homotopy class in π p (N) (White 1988). Evaluating a fixed element z of Hom(π p (N), R) on this homotopy class thus gives a real number Φ z,u (S). The main result of the paper is that any W 1,p -weakly convergent limit u of a sequence of smooth maps in C (R p+1, N), Φ z,u has a rectifiable Poincaré dual . Here Γ is a a countable union of C 1 curves in R p+1 with Hausdorff -measurable orientation and density function θ: Γ→R. The intersection number between and S evaluates Φ z,u (S), for almost every p-sphere S. Moreover, we exhibit a non-negative integer n z , depending only on homotopy operation z, such that even though the mass may be infinite. We also provide cases of N, p and z for which this rational power p/(p + n z ) is optimal. The construction of this Poincaré dual is based on 1-dimensional “bubbling” described by the notion of “scans” which was introduced in Hardt and Rivière (2003). We also describe how to generalize these results to R m for any m ⩾ p + 1, in which case the bubbling is described by an (mp)-rectifiable set with orientation and density function determined by restrictions of the mappings to almost every oriented Euclidean p-sphere.  相似文献   

9.
We consider the space A(\mathbbT)A(\mathbb{T}) of all continuous functions f on the circle \mathbbT\mathbb{T} such that the sequence of Fourier coefficients [^(f)] = { [^(f)]( k ), k ? \mathbbZ }\hat f = \left\{ {\hat f\left( k \right), k \in \mathbb{Z}} \right\} belongs to l 1(ℤ). The norm on A(\mathbbT)A(\mathbb{T}) is defined by || f ||A(\mathbbT) = || [^(f)] ||l1 (\mathbbZ)\left\| f \right\|_{A(\mathbb{T})} = \left\| {\hat f} \right\|_{l^1 (\mathbb{Z})}. According to the well-known Beurling-Helson theorem, if f:\mathbbT ? \mathbbT\phi :\mathbb{T} \to \mathbb{T} is a continuous mapping such that || einf ||A(\mathbbT) = O(1)\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = O(1), n ∈ ℤ then φ is linear. It was conjectured by Kahane that the same conclusion about φ is true under the assumption that || einf ||A(\mathbbT) = o( log| n | )\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\log \left| n \right|} \right). We show that if $\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right)$\left\| {e^{in\phi } } \right\|_{A(\mathbb{T})} = o\left( {\left( {{{\log \log \left| n \right|} \mathord{\left/ {\vphantom {{\log \log \left| n \right|} {\log \log \log \left| n \right|}}} \right. \kern-\nulldelimiterspace} {\log \log \log \left| n \right|}}} \right)^{1/12} } \right), then φ is linear.  相似文献   

10.
The main results of the paper are: (1) The boundedness of singular integral operators in the variable exponent Lebesgue spaces L p(·)(Γ, w) on a class of composed Carleson curves Γ where the weights w have a finite set of oscillating singularities. The proof of this result is based on the boundedness of Mellin pseudodifferential operators on the spaces Lp(·)(\mathbbR +,dm){L^{p(\cdot )}(\mathbb{R} _{+},d\mu)} where dμ is an invariant measure on multiplicative group ${\mathbb{R}_{+}=\left\{r\in \mathbb{R}:r >0 \right\}}${\mathbb{R}_{+}=\left\{r\in \mathbb{R}:r >0 \right\}}. (2) Criterion of local invertibility of singular integral operators with piecewise slowly oscillating coefficients acting on L p(·)(Γ, w) spaces. We obtain this criterion from the corresponding criteria of local invertibility at the point 0 of Mellin pseudodifferential operators on \mathbbR+{\mathbb{R}_{+}} and local invertibility of singular integral operators on \mathbbR{\mathbb{R}}. (3) Criterion of Fredholmness of singular integral operators in the variable exponent Lebesgue spaces L p(·)(Γ, w) where Γ belongs to a class of composed Carleson curves slowly oscillating at the nodes, and the weight w has a finite set of slowly oscillating singularities.  相似文献   

11.
We consider complex-valued functions fL 1(ℝ+), where ℝ+:=[0,∞), and prove sufficient conditions under which the sine Fourier transform [^(f)]s\hat{f}_{s} and the cosine Fourier transform [^(f)]c\hat{f}_{c} belong to one of the Lipschitz classes Lip (α) and lip (α) for some 0<α≦1, or to one of the Zygmund classes Zyg (α) and zyg (α) for some 0<α≦2. These sufficient conditions are best possible in the sense that they are also necessary if f(x)≧0 almost everywhere.  相似文献   

12.
For open discrete mappings f:D\{ b } ? \mathbbR3 f:D\backslash \left\{ b \right\} \to {\mathbb{R}^3} of a domain D ì \mathbbR3 D \subset {\mathbb{R}^3} satisfying relatively general geometric conditions in D \ {b} and having an essential singularity at a point b ? \mathbbR3 b \in {\mathbb{R}^3} , we prove the following statement: Let a point y 0 belong to [`(\mathbbR3)] \f( D\{ b } ) \overline {{\mathbb{R}^3}} \backslash f\left( {D\backslash \left\{ b \right\}} \right) and let the inner dilatation K I (x, f) and outer dilatation K O (x, f) of the mapping f at the point x satisfy certain conditions. Let B f denote the set of branch points of the mapping f. Then, for an arbitrary neighborhood V of the point y 0, the set Vf(B f ) cannot be contained in a set A such that g(A) = I, where I = { t ? \mathbbR:| t | < 1 } I = \left\{ {t \in \mathbb{R}:\left| t \right| < 1} \right\} and g:U ? \mathbbRn g:U \to {\mathbb{R}^n} is a quasiconformal mapping of a domain U ì \mathbbRn U \subset {\mathbb{R}^n} such that A ⊂ U.  相似文献   

13.
We consider a class of kernel estimators [^(t)]n,h\hat{\tau}_{n,h} of the tail index of a Pareto-type distribution, which generalizes and includes the classical Hill estimator [^(a)]n,k\hat{a}_{n,k}. It is well-known that [^(a)]n,k\hat{a}_{n,k} is a consistent estimator of the tail index if and only if k→ ∞ and k/n→0. Under suitable assumptions on the kernel, [^(t)] n,h\hat{\tau} _{n,h} is consistent whenever the bandwidth is taken to be a sequence of non-random numbers satisfying h n →0 and nh n → ∞. We extend this result and prove the consistency uniformly over a certain range of bandwidths. This permits the treatment of estimators of the tail index based upon data-dependent bandwidths, which are often used in practice. In the process, we establish a uniform in bandwidth result for kernel-type regression estimators with a fixed design, which will likely be of separate interest.  相似文献   

14.
In 1998, Kleinbock and Margulis proved Sprindzuk’s conjecture pertaining to metrical Diophantine approximation (and indeed the stronger Baker–Sprindzuk conjecture). In essence, the conjecture stated that the simultaneous homogeneous Diophantine exponent w 0(x) = 1/n for almost every point x on a nondegenerate submanifold M \mathcal{M} of \mathbbRn {\mathbb{R}^n} . In this paper, the simultaneous inhomogeneous analogue of Sprindzuk’s conjecture is established. More precisely, for any “inhomogeneous” vector θ ∈ \mathbbRn {\mathbb{R}^n} we prove that the simultaneous inhomogeneous Diophantine exponent w 0(x , θ) is 1/n for almost every point x on M \mathcal{M} . The key result is an inhomogeneous transference principle which enables us to deduce that the homogeneous exponent w 0(x) is 1/n for almost all xM \mathcal{M} if and only if, for any θ ∈ \mathbbRn {\mathbb{R}^n} , the inhomogeneous exponent w 0(x , θ) = 1/n for almost all xM \mathcal{M} . The inhomogeneous transference principle introduced in this paper is an extremely simplified version of that recently discovered by us. Nevertheless, it should be emphasised that the simplified version has the great advantage of bringing to the forefront the main ideas while omitting the abstract and technical notions that come with describing the inhomogeneous transference principle in all its glory.  相似文献   

15.
An integral coefficient matrix determines an integral arrangement of hyperplanes in \mathbbRm{\mathbb{R}^m} . After modulo q reduction ${(q \in {\mathbb{Z}_{ >0 }})}${(q \in {\mathbb{Z}_{ >0 }})} , the same matrix determines an arrangement Aq{\mathcal{A}_q} of “hyperplanes” in \mathbbZmq{\mathbb{Z}^m_q} . In the special case of central arrangements, Kamiya, Takemura, and Terao [J. Algebraic Combin. 27(3), 317–330 (2008)] showed that the cardinality of the complement of Aq{\mathcal{A}_q} in \mathbbZmq{\mathbb{Z}^m_q} is a quasi-polynomial in ${q \in {\mathbb{Z}_{ >0 }}}${q \in {\mathbb{Z}_{ >0 }}} . Moreover, they proved in the central case that the intersection lattice of Aq{\mathcal{A}_q} is periodic from some q on. The present paper generalizes these results to the case of non-central arrangements. The paper also studies the arrangement [^(B)]m[0,a]{\hat{\mathcal{B}}_m^{[0,a]}} of Athanasiadis [J. Algebraic Combin. 10(3), 207–225 (1999)] to illustrate our results.  相似文献   

16.
A generalized polynomial is a real-valued function which is obtained from conventional polynomials by the use of the operations of addition, multiplication, and taking the integer part; a generalized polynomial mapping is a vector-valued mapping whose coordinates are generalized polynomials. We show that any bounded generalized polynomial mapping u: Z d  → R l has a representation u(n) = f(ϕ(n)x), n ∈ Z d , where f is a piecewise polynomial function on a compact nilmanifold X, x ∈ X, and ϕ is an ergodic Z d -action by translations on X. This fact is used to show that the sequence u(n), n ∈ Z d , is well distributed on a piecewise polynomial surface (with respect to the Borel measure on that is the image of the Lebesgue measure under the piecewise polynomial function defining ). As corollaries we also obtain a von Neumann-type ergodic theorem along generalized polynomials and a result on Diophantine approximations extending the work of van der Corput and of Furstenberg–Weiss.  相似文献   

17.
For the least upper bounds of deviations of the de la Vallée-Poussin operators on the classes [^(L)]by \hat{L}_\beta^\psi of rapidly vanishing functions ψ in the metric of the spaces [^(L)]p {\hat{L}_p} , 1 ≤ p ≤ ∞, we establish upper estimates that are exact on some subsets of functions from [^(L)]p {\hat{L}_p} .  相似文献   

18.
Let ${\Gamma < {\rm SL}(2, {\mathbb Z})}Let G < SL(2, \mathbb Z){\Gamma < {\rm SL}(2, {\mathbb Z})} be a free, finitely generated Fuchsian group of the second kind with no parabolics, and fix two primitive vectors v0, w0 ? \mathbb Z2  \  {0}{v_{0}, w_{0} \in \mathbb {Z}^{2} \, {\backslash} \, \{0\}}. We consider the set S{\mathcal {S}} of all integers occurring in áv0g, w0?{\langle v_{0}\gamma, w_{0}\rangle}, for g ? G{\gamma \in \Gamma} and the usual inner product on \mathbb R2{\mathbb {R}^2}. Assume that the critical exponent δ of Γ exceeds 0.99995, so that Γ is thin but not too thin. Using a variant of the circle method, new bilinear forms estimates and Gamburd’s 5/6-th spectral gap in infinite-volume, we show that S{\mathcal {S}} contains almost all of its admissible primes, that is, those not excluded by local (congruence) obstructions. Moreover, we show that the exceptional set \mathfrak E(N){\mathfrak {E}(N)} of integers |n| < N which are locally admissible (n ? S   (mod  q)   for all   q 3 1){(n \in \mathcal {S} \, \, ({\rm mod} \, q) \, \, {\rm for\,all} \,\, q \geq 1)} but fail to be globally represented, n ? S{n \notin \mathcal {S}}, has a power savings, |\mathfrak E(N)| << N1-e0{|\mathfrak {E}(N)| \ll N^{1-\varepsilon_{0}}} for some ${\varepsilon_{0} > 0}${\varepsilon_{0} > 0}, as N → ∞.  相似文献   

19.
We prove that a complete noncompact orientable stable minimal hypersurface in \mathbbSn+1{\mathbb{S}^{n+1}} (n ≤ 4) admits no nontrivial L 2-harmonic forms. We also obtain that a complete noncompact strongly stable hypersurface with constant mean curvature in \mathbbRn+1{\mathbb{R}^{n+1}} or \mathbbSn+1{\mathbb{S}^{n+1}} (n ≤ 4) admits no nontrivial L 2-harmonic forms. These results are generalized versions of Tanno’s result on stable minimal hypersurfaces in \mathbbRn+1{\mathbb{R}^{n+1}}.  相似文献   

20.
The following regularity of weak solutions of a class of elliptic equations of the form are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号