首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The internal dynamics and the thermal stability of myosin in rabbit psoas muscle fibres in different intermediate states of the ATP hydrolysis cycle were studied by differential scanning calorimetry (DSC) and electron paramagnetic resonance (EPR) spectroscopy. Three overlapping endotherms were detected in rigor, in strongly binding and weakly binding state of myosin to actin. The transition at 58.4°C can be assigned to the nucleotide-binding domain. The transition at highest temperature represents the unfolding of the actin and the contributions arising from the actin-myosin interaction. The transition of 54°C reflects the interaction between the subunits of myosin. Nucleotide binding induced shifts of the melting temperatures and produced variations in the calorimetric enthalpy changes. The changes of the EPR parameters indicated local rearrangements of the internal structure in myosin heads. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Electron paramagnetic resonance (EPR, ST-EPR) and differential scanning calorimetry(DSC) were used in conventional and temperature modulated mode to study internal motions and energetics of myosin in skeletal muscle fibres in different states of the actomyosin ATPase cycle. Psoas muscle fibres from rabbit were spin-labelled with an isothiocyanate-based probe molecule at the reactive sulfhydryl site (Cys-707) of the catalytic domain of myosin. In the presence of nucleotides (ATP, ADP, AMP⋅PNP) and ATP or ADP plus orthovanadate, the conventional EPR spectra showed changes in the ordering of the probe molecules in fibres. In MgADP state a new distribution appeared; ATP plus orthovanadate increased the orientational disorder of myosin heads, a random population of spin labels was superimposed on the ADP-like spectrum. In the complex DSC pattern, higher transition referred to the head region of myosin. The enthalpy of the thermal unfolding depended on the nucleotides, the conversion from a strongly attached state of myosin to actin to a weakly binding state was accompanied with an increase of the transition temperature which was due to the change of the affinity of nucleotide binding to myosin. This was more pronounced in TMDSC mode, indicating that the strong-binding state and rigor state differ energetically from each other. The different transition temperatures indicated alterations in the internal microstructure of myosin head region The monoton decreasing TMDSC heat capacities show that C p of biological samples should not be temperature independent. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Differential scanning calorimetry and electron paramagnetic resonance experiments were performed on glycerinated skeletal muscle fibres to study the effect of the binding of nucleotides and nucleotide analogues to myosin. The thermal unfolding of muscle fibres in rigor showed three discrete domain regions with thermal stability of 52.2, 58.8 and 67.8°C. AMP.PNP and ATP plus AlF3 or BeF2 affected markedly the transitions, which implies the strong interaction between AMP.PNP or nucleotide analogues and catalytic domain of myosin, and a partial dissociation of heads from actin. ADP.BeFx and states model the transition states of the ATP hydrolysis cycle which precede the powerstroke of the muscle fibres. Spectrum deconvolution on isothiocyanate-labelled fibres in AMP.PNP-state resulted in two populations; 50% of labels was highly ordered with respect to fibre axis, whereas the other 50% of labels was randomly oriented. The myosin heads which showed high degree of order were in the strongly binding ADP-state. The spectra in - and ADP.BeFx state reflected random orientation of labels with increased rotational mobility in comparison with rigor. The results suggest that myosin in muscle fibres in ADP.BeFx state exists in two forms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Thermal stability and internal dynamics of myosin head in psoas muscle fibres of rabbit in the intermediate state AM.ADP.Pi - mimicked by AM.ADP.Vi - of the ATP hydrolysis cycle was studied by differential scanning calorimetry and spin label electron paramagnetic resonance spectroscopy. Three overlapping endotherms were detected in rigor, in strongly binding ADP and weakly binding AM.ADP.Vi state of myosin to actin. The transition at 54.0°C can be assigned to the 50 k actin-binding domain. The transition at highest temperature (67.3°C) represents the unfolding of actin and the contributions arising from the nucleotide-myosin head interaction. The transition at 58.4°C reflects the melting of the large rod part of myosin. Nucleotide binding (ADP, ATP plus orthovanadate) induced shifts of the melting temperatures and produced changes in the calorimetric enthalpies. The changes of the EPR parameters indicated local rearrangements of the internal structure in myosin heads in agreement with DSC findings. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The effect of AMP.PNP on the thermal stability and dynamics of myosin head were investigated by using DSC and different spin label technique for chemically skinned muscle fibres prepared from rabbit. The thermal unfolding of the fibres in rigor, strong as well as weak-binding state showed a complex process characterizing at least three discrete domain regions with different stability (T m =54, 58.4 and 62.3°C). The unfolding at 54°C refers to the catalytic domain of myosin, whereas transition at T m =58.4°C represents the rod-like region. In the presence of AMP.PNP only the parameters of the last transition changed significantly (T m =70.4°C) showing an increased interaction between actin and myosin heads being attached to actin. Measurements on MSL-fibres (labelled at Cys-707 of myosin) in the presence of AMP.PNP showed that about half of the cross-bridges dissociated from actin. This fraction had a dynamic disorder, the other population had the same spectral feature as in rigor. In contrast, on TCSL-fibres AMP.PNP increased the orientational disorder of myosin heads, a random population of spin labels was superimposed on the ADP-like spectrum showing conformational and motional changes in the internal structure of myosin heads. ST EPR measurements reported increased rotational mobility of spin labels in the presence of AMP.PNP. The DSC and EPR results suggest that in the presence of AMP.PNP the attached heads have the same global orientation as in rigor, but the internal structure undergoes a local conformational change. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Force generation in muscle during contraction arises from direct interaction of the two main protein components of the muscle, myosin and actin. The process is driven by the energy liberated from the hydrolysis of ATP. In the presence of CaATP the energy released from hydrolysis produces conformational changes in myosin and actin, which can be manifested as an internal motion of myosin head while bound to actin. It is suggested that myosin heads attached to actin produce conformational changes during the hydrolysis process of ATP, which results in a strain in the head portion of myosin in an ATP-dependent manner. These structural changes lead to a large rotation of myosin neck region relieving the strain. Paramagnetic probes and EPR spectroscopy provide direct method in which the rotation and orientation of specifically labelled proteins can be followed during muscle activity. In order to find correlation between local and global structural changes in the intermediate states of the ATPase cycle, the spectroscopic measurements were combined with DSC measurements that report domain stability and interactions.  相似文献   

7.
The extent of actin polymerization has been studied for samples in which the bound nucleotide of the actin was ATP, ADP, or an analog of ATP that was not split (AMPPNP). The equilibrium constants for the addition of a monomer to a polymer end were determined from the concentration of monomer coexisting with the polymer. An analysis of these results concludes that the bound ATP on G-actin provides little energy to promote the polymerization of the actin. AMPPNP was incorporated into F-actin and the interaction of F-actin - AMPPNP with myosin was studied. F-actin - AMPPNP activated the ATPase of myosin to the same extent as did F-actin - ADP. However, the rate of superprecipitation was slower in the case of F-actin - AMPPNP than in the control.  相似文献   

8.
Actin is one of the important elements of the striated muscle that transmits force from the myosin filaments and as a part of the cytoskeleton plays an important role in shape determination of cells. It is a known experience that removal of the divalent cation affects the dynamic behaviour of actin in both forms. Paramagnetic probes and electron paramagnetic resonance (EPR) spectroscopy provide direct technique by which the rotation and the orientation of specifically labelled proteins can be followed during biochemical manipulations. The spectroscopic measurements could be combined with DSC measurements that report domain stability and interactions and allow the calculation of the thermodynamic parameters during the melting process. Actin was spin-labelled with maleimide or fluoro-dinitro proxyl probe molecules which are bound to the Cys-374 or Lys-61 residues of the smaller domain. EPR spectroscopy spectra were recorded in monomer form in Ca- and EGTA-state as a function of temperature up to the melting point. Similarly, DSC measurements were performed and analyzed using the kinetic theory. The measurements showed that removal of the divalent cation from the globular actin induced significant local and global structural change both in the thermodynamic properties and the rotational mobility of actin detected by DSC and EPR. On the basis of the results derived by deconvolution of the DSC pattern we can suggest a non-interactive two-domain melting for the monomer actin after removing the divalent cations.  相似文献   

9.
Actin polymerization is coupled to the hydrolysis of adenosine triphosphate (ATP) into adenosine diphosphate (ADP) and inorganic phosphate (P(i)). Therefore, each protomer within an actin filament can attain three different nucleotide states corresponding to bound ATP, ADP/P(i), and ADP. These protomer states form spatial patterns on the growing (or shrinking) filaments. Using Brownian dynamics simulations, the growth behavior of long filaments is studied, together with the associated protomer patterns, as a function of ATP-actin monomer concentration, C(T), within the surrounding solution. For concentrations close to the critical concentration C(T)=C(T,cr), the filaments undergo treadmilling, i.e., they grow at the barbed and shrink at the pointed end, which leads to directed translational motion of the whole filament. The corresponding nonequilibrium states are characterized by several global fluxes and by spatial density and flux profiles along the filaments. We focus on a certain set of transition rates as deduced from in vitro experiments and find that the associated treadmilling (or turnover) rate is about 0.08 monomers per second.  相似文献   

10.
We have examined by DSC the complexes of myosin with actin in fibre system in the absence of nucleotides and the intermediate state of ATP hydrolysis by mimicking stable complex with myosin and ADP and beryllium fluoride in muscle fibres. Comparing the DSC results with other structural analogues of phosphate Pi leads the conclusion that the AM.ADP.BeFx complex favours the AM.ADP.Pi complex in fibre system. The deconvolution of DSC scans resulted in four transitions, the first three transition temperatures were almost independent of the intermediate state of the muscle, the last transition temperature was shifted to higher temperature, depending on the actual intermediate states of ATP hydrolysis. In AM.ADP.Vi state the transition temperature at the second and third transitions (actin binding domain and myosin rod) varied only slightly, whereas the last one (the fourth transition) shifted markedly to higher temperature depending on the ternary complex, e.g. in case of ADP plus BeFx it was 77.7 °C, the highest value in weakly binding state of myosin to actin. The sum of calorimetric enthalpies of the first and last curves was practically constant, but their fractions depended on the state of the muscle. In strongly binding state of myosin to actin (rigor, ADP state) the fraction of the first transition was much larger, than the last one, whereas in weakly binding state of myosin to actin, the fraction of the first transition decreased at the expense of the last one. It supports also the view that these transitions are parts of the same portion of the myosin molecule.  相似文献   

11.
We introduce here an ATP (adenosine triphosphate)-fueled nano-biomachine constructed from actin and myosin gels. Various types of chemically cross-linked actin gel, which are tens of times larger in size than native actin filaments (F-actin), were formed by complexing with cation-polymers and placed on a chemically cross-linked myosin gel. By adding dilute solution of ATP, they moved along the myosin gel with a velocity as high as that of native F-actin by coupling to ATP hydrolysis. Formation mechanism and structure of actin complexes as well as those of myosin gels were studied in detail and elucidated with the specific characteristics of the motility. These results demonstrate that one can construct nano-biomachines fueled by chemical energy of ATP with controlled motility. The text was submitted by the authors in English.  相似文献   

12.
Hydrogels comprised of boronic acid monomer (3), cationic monomer (4), and crosslinker monomer (5) were prepared by radical copolymerization. These hydrogels could efficiently bind nucleotides such as AMP and ATP by a cooperative action of the boronic acid‐cis‐diol complexation and the electrostatic interaction between the cationic unit and the phosphate group. The binding processes were conveniently monitored by the swelling and deswelling behaviors of these hydrogels in aqueous solution. For the hydrogel with the specific monomer composition an interesting “charge inversion” was observable: with increasing AMP or ATP concentration, the cation‐rich hydrogel was gradually charge neutralized, once shrunken at the neutral stage, and then swollen again because of the anion‐rich charge state. These nucleotide‐induced swelling and deswelling phenomena were reproduced on the gold surface of a QCM resonator. Therefore, the present system is not only interesting to consider nucleotide‐induced mechanochemical properties, but also applicable as a sensor to the nucleotide detection. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1302–1310, 2000  相似文献   

13.
布朗动力学理论模拟动态肌动蛋白纤维的增长   总被引:1,自引:0,他引:1  
郭坤琨  韩文驰 《化学学报》2011,69(2):145-152
肌动蛋白的聚合耦合三磷酸腺酐(ATP)分子水解成二磷酸腺苷(ADP)分子和磷酸(Pi)的释放两个过程. 因此, 肌动蛋白纤维上的原聚体存在三种不同状态, 即分别结合ATP, ADP/Pi和ADP分子. 原聚体的不同状态导致纤维具有不同的空间图谱, 这些状态的空间分布将影响纤维的各种行为. 为此,建立了相应的分子模型,在布朗动力学模拟中实现了遵循时间演化的连续马尔可夫随机过程的解聚和水解反应; 重点阐述了如何实现纤维两端的聚合和解聚达到化学平衡的方法, 并系统研究了纤维在结合ATP分子的肌动蛋白单体溶液中的增长行为.  相似文献   

14.
Polymerization dynamics of single actin filaments coupled with adenosine triphosphate (ATP) hydrolysis is investigated via both theoretical analysis and Brownian dynamics simulations. Brownian dynamics simulations have been applied recently to study the growth behaviors of long filaments as a function of the free actin monomer concentrations, C(T), which is found to be in agreement with the associated experiments. In the present study, both ATP cap length and length diffusivity are studied as a function of the free ATP-actin monomer concentrations, C(T). The exact analytical expressions are found to be in perfect consistency with Brownian dynamics simulations. Likewise, we find that the length diffusion coefficient is peaked near the critical concentration, C(T,cr). It is, therefore, expected that the dependence of length diffusivity on ATP-actin monomer concentrations is utilized to analyze the surprising experiments on the length fluctuations of individual actin filaments.  相似文献   

15.
Myosin catalyzed exchange between 32Pi and ATP in reaction medium during its enzymatic hydrolysis of ATP only by a very small amount. Addition of actin increased to a great extent the rate of incorporation of 32Pi in the presence of Mg. Glycerinated smooth muscle fibers also exhibited the ability to exchange 32Pi and ATP upon the application of external force (repeated stretching and releasing). A schematic mechanism of the action of actin and external force on acceleration of 32Pi incorporation is proposed and the importance of the M-ADP complex for force generation is suggested.  相似文献   

16.
The effect of free radicals obtained in hydroxyl and cerium(IV)-nitrilotriacetic acid free radical generating systems on contractile proteins (actin, myosin and their complexes in glycerinated muscle fibres) was studied using differential scanning calorimetry and spin trapping electron paramagnetic resonance technique. The analysis of spectra showed that selective attack of thiol groups – Cys-257 and Cys-374 residues of actin, and among others Cys-707 residue of myosin – and random attack of sidechains of the main proteins of muscle tissue produced structural and functional changes, which affected the ATP hydrolysis cycle and very likely the dynamics of actin. The melting curves obtained on protein systems support the view that global conformational changes accompany the local damage of free radicals. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The RNA helicase DbpA promotes RNA remodeling coupled to ATP hydrolysis. It is unique because of its specificity to hairpin 92 of 23S rRNA (HP92). Although DbpA kinetic pathways leading to ATP hydrolysis and RNA unwinding have been recently elucidated, the molecular (atomic) basis for the coupling of ATP hydrolysis to RNA remodeling remains unclear. This is, in part, due to the lack of detailed structural information on the ATPase site in the presence and absence of RNA in solution. We used high-field pulse ENDOR (electron-nuclear double resonance) spectroscopy to detect and analyze fine conformational changes in the protein's ATPase site in solution. Specifically, we substituted the essential Mg(2+) cofactor in the ATPase active site for paramagnetic Mn(2+) and determined its close environment with different nucleotides (ADP, ATP, and the ATP analogues ATPγS and AMPPnP) in complex with single- and double-stranded RNA. We monitored the Mn(2+) interactions with the nucleotide phosphates through the (31)P hyperfine couplings and the coordination by protein residues through (13)C hyperfine coupling from (13)C-enriched DbpA. We observed that the nucleotide binding site of DbpA adopts different conformational states upon binding of different nucleotides. The ENDOR spectra revealed a clear distinction between hydrolyzable and nonhydrolyzable nucleotides prior to RNA binding. Furthermore, both the (13)C and the (31)P ENDOR spectra were found to be highly sensitive to changes in the local environment of the Mn(2+) ion induced by the hydrolysis. More specifically, ATPγS was efficiently hydrolyzed upon binding of RNA, similar to ATP. Importantly, the Mn(2+) cofactor remains bound to a single protein side chain and to one or two nucleotide phosphates in all complexes, whereas the remaining metal coordination positions are occupied by water. The conformational changes in the protein's ATPase active site associated with the different DbpA states occur in remote coordination shells of the Mn(2+) ion. Finally, a competitive Mn(2+) binding site was found for single-stranded RNA construct.  相似文献   

18.
Conventional and saturation transfer electron paramagnetic resonance spectroscopy (EPR and ST EPR) and differential scanning calorimetry (DSC) were used to study the motional dynamics and segmental flexibility of cardiac myosins.Cardiac myosins isolated from bovine and human heart muscle were spin-labelled with isothiocyanate- or maleimide-based probe molecules at the reactive sulfhydryl sites (Cys-697 and Cys-707) of the motor domain. The maleimide probe molecules attached to human cardiac myosin rotated with an effective rotational correlation time of 33 ns which was at least eight times shorter than the rotational correlation time of the same label on skeletal myosin (260 ns). In the presence of MgADP and MgADP plus orthovanadate, flexibility changes in the multisubunit structure of myosins were detected, but this did not lead to changes of the overall rotational property of the myosin heads. Significant difference in the internal flexibility was detected on myosin samples isolated from ischemic tissue, the rotational correlation time decreased to 25 ns.DSC measurements supported the view that addition of nucleotides produced additional loosening in the multisubunit structure of cardiac myosin. It is postulated that there is an intersite communication between the nucleotide binding domain and the 20 kDa subunit where the reactive thiol sites are located.This work was supported by grants from the National Research Foundation (OTKA T 017099) and Ministry of Social Welfare (ETT 737/1993). The Bruker ESP 300 E spectrometer and the SETARAM Micro DSC-II used in the experiments were purchased with funds provided by the National Research Foundation Grants CO-123 and CO-272. The computer (PC-386) was supported by POPEX Ltd., Pécs, Hungary. The authors thank to Prof. Dr. K. Hideg (Central Research Laboratory) for providing the iodoacetamide spin label.  相似文献   

19.
Actin is one of the main components in the eukaryote cells which plays significant role in many cellular processes, like force-generation, maintenance of the shape of cells, cell-division cycle and transport processes. In this study the thermal transitions of monomer and polymerized actins were studied to get information about the changes induced by polymerization and binding of myosin to actin using DSC and EPR techniques. The main thermal transition of F-actin was at 67.5°C by EPR using spin-labeled actin (the relative viscosity change was around 62°C), while the DSC denaturation T ms were at 60.3d°C for G-actin and at 70.5°C for F-actin. Applying the Lumry-Eyring model to obtain the parameters of the kinetic process and calculate the activation energy, a ‘break’ was found for F-actin in the function of first-order kinetic constant vs. 1/T. This indicates that an altered interdomain interaction is present in F-actin. The addition of myosin or heavy meromyosin (HMM) in different molar ratio of myosin to actin has changed significantly the EPR spectrum of spin-labeled F-actin, indicating the presence of the supramolecular complex. Analyzing the DSC traces of the actomyosin complex it was possible to identify the different structural domains of myosin and actin.  相似文献   

20.
新型光取向液晶聚合物的制备及其性能表征   总被引:2,自引:0,他引:2  
目前,液晶分子常规的定向方法是对涂有定向膜的基片进行摩擦,这种方法简单、方便,然而在摩擦过程中却难以避免产生机械划痕、污染或静电,影响了液晶分子取向的均匀性,光控取向方法是近年来发展起来的一种液晶定向新技术,即通过激光或偏振紫外光照射,引发基片上的聚合物薄膜发生光致聚合、光致异构或光致分解反应,产生表面的各向异性,进而诱导液晶分子取向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号