首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of a photoelectron study using ultraviolet 40.81 eV photons (UPS) of the outermost bands of the molecular solids NH3 and H2O are reported. The binding energies, the energy separation, the band widths and the branching ratio of the two outermost bands of solid NH3 are found not to be significantly different from the 3al and 1e molecular orbital states of the gaseous NH3 UPS spectrum. This implies that hydrogen bonding has not produced any significant change in the electronic structure of the valence bands of solid NH3. Because of a much smaller intermolecular hydrogen bond length in solid H2O compared to that in solid NH3, the hydrogen bond does, however, produce a significant change in the valence bands of H2O on solidification, and because of the orbital geometry it predominantly affects the 3al molecular orbital state.  相似文献   

2.
Adiabatic potential energy surfaces (PESs) for three major isotopologues of water, H216O, H217O, and H218O, are constructed by fitting to observed vibration-rotation energy levels of the system using the nuclear motion program DVR3D employing an exact kinetic energy operator. Extensive tests show that the mass-dependent ab initio surfaces due to Polyansky et al. [O.L. Polyansky, A.G. Császár, S.V. Shirin, N.F. Zobov, P. Barletta, J. Tennyson, D.W. Schwenke, P.J. Knowles, Science 299 (2003) 539-542.] provide an excellent starting point for the fits. The refinements are performed using a mass-independent morphing function, which smoothly distorts the original adiabatic ab initio PESs. The best overall fit is based on 1788 experimental energy levels with the rotational quantum number J = 0, 2, and 5. It reproduces these levels with a standard deviation of 0.079 cm−1 and gives, when explicit allowance is made for nonadiabatic rotational effects, excellent predictions for levels up to J = 40. Theoretical linelists for all three isotopologues of water involved in the PES construction were calculated up to 26 000 cm−1 with energy levels up to J = 10. These linelists should make an excellent starting point for spectroscopic modelling and analysis.  相似文献   

3.
The interaction of SO2 with evaporated iron surfaces in the temperature range 80–450 K was investigated by using X-ray photoelectron spectroscopy. At 300 K, SO2 decomposed at the initial stage of the interaction and gave adsorbed S with the S2p peak at 161.9 eV and adsorbed O with the O1s at 530.0 eV. Further exposure of SO2 gave adsorbed SO4 with S2p at 166.8 eV O1s at 531.3 eV, being different in binding energies from ionic SO42?. This indicates the two stage reaction Of SO2 with iron surface; SO2(gas) → S(ads) + 20(ads), SO2(gas) + 2O(ads) → SO4(ads). The first reaction did not occur at low temperature or in the presence of adsorbed O. The adsorbed SO4 formed at 80 K showed a quantitative decomposition reaction into S(ads) and O(ads) in the temperature range 200–350 K.  相似文献   

4.
Photoelectron spectroscopy with synchrotron radiation employing high energy and angular resolutions is a very efficient tool for experimental investigations of the electronic structure of solids and their surfaces. In addition to standard band-mapping applications, photoemission intensity and line-shape analyses provide valuable information about wave functions, bonds and interactions of a many-electron system. In this report we choose covalent semiconductor surfaces as well as metallic clean and nanostructured surfaces of layered materials to serve as model systems for assessing the spatial origin of photoelectrons and the three-dimensional shape of Fermi surfaces. Received: 11 July 2001 / Accepted: 23 July 2001 / Published online: 3 April 2002  相似文献   

5.
The interaction of H2O with Zircaloy-4 (Zry-4) is investigated using Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) methods. Following adsorption of H2O at 150 K the Zr(MNV) and Zr(MNN) Auger features shift by ∼6.5 and 4.5 eV, respectively, indicating surface oxidation. Heating H2O/Zry-4 results in molecular desorption of water at both low and high temperatures. The low-temperature desorption is attributed to ice multilayers, whereas, three overlapping high-temperature features are presumably due to recombinative desorption. This high-temperature desorption begins before the surface oxide is dissolved, continues upon its removal, and is atypical for water/metal systems. Unexpectedly, no significant desorption of hydrogen is observed near 400 K, as is typically observed following O2 adsorption on Zr-based materials. However, we do observe that H2O adsorption on Zry-4 surfaces roughened by argon ion sputtering results in H2 desorption.  相似文献   

6.
Electron energy peak shifts and peak shapes were determined in the ionization of H2O, D2O, H2S and SO2 by Ne(3P2) and He(21S, 23S) metastable atoms. The shifts are large, especially in ionization of H2O and D2O into the ionic ground state and are probably mostly due to chemical interaction during the collision.In a previous paper the electron energy distribution curves for ionization of CO, HCl, HBr, N2O, NO2, CO2, COS and CS2 by helium, neon and argon metastables and the characteristics of this ionization were described1. In this paper the series of triatomic molecules was extended to the molecules H2O, D2O, H2S and SO2. Because all these molecules have considerable dipole moments it could be expected that the peak shifts might be enhanced as compared with other triatomic molecules.  相似文献   

7.
The nature of argon-ion bombarded nickel surfaces (polycrystalline, and (111), (110) and (100) single crystals) and their subsequent interaction with oxygen at ordinary temperatures have been studied using X-ray and UV photoelectron spectroscopy, including angular variation measurements and the determination of work function changes, in combination in the same apparatus. Variations between the HeI spectra of the four clean substrates were taken to confirm the presence of substantial order within the depth sampled by UPS. The four surfaces exhibited similar but not identical behaviour during oxidation, resembling that reported by other workers from studies of both annealed single crystals and evaporated polycrystalline films. The initial process was deduced to be essentially dissociative chemisorption: no evidence supporting a previous suggestion of associative adsorption at low coverages was found. Oxygen commenced to penetrate below the surface of all samples before oxygen equivalent to a monolayer had been taken up (~10 L exposure) and further substantial uptake followed resulting in the formation of a stable film (~18 Å) of nickel oxide by ~100 L exposure. This oxide layer was not stoichiometric nickel(II) oxide: it was characterized by the presence of two distinct O 1s signals, the relative intensities of which depended on the crystallographic nature of the surface. It is tentatively suggested that the oxygen signal with the higher BE be associated with NiIII. Comparison of the X-ray and UV spectra suggests that the oxide film is very non-uniform in thickness, some Ni metal remaining very close to the surface.  相似文献   

8.
9.
The adsorption and reaction of H2O with adsorbed oxygen atoms on Ag(110) was examined by UPS. In agreement with previous EELS results, H2O formed multilayers of ice upon adsorption at 140 K. The ice layers could be easily distinguished from monolayer coverages of chemisorbed H2O (present above 160 K) by UPS. The ice layers produced (1) strong attenuation of the emission from the Ag d-bands, (2) a nearly 2 eV shift of H2O valence levels to higher binding energy and (3) strong attenuation of emission from the H2O 3a1 orbital. H2O was observed to react stoichiometrically with O(a) above 250 K to produce a pure layer of adsorbed hydroxyl species. The UPS spectra for these species exhibited features at ?5.8 and ?8.7 eV, as well as strong features above the d-bands. These spectra were compared with those for OH(a) on other surfaces, and the difficulties of identifying OH by UPS due to contamination by excess H2O are discussed.  相似文献   

10.
The initial stages of oxidation of Al single crystals are studied by soft X-ray photoemission spectroscopy at photon energies hv = 30 eV and 111.13 eV using synchroton radiation. Both the valence band region and the substrate Al 2p core levels are measured with high resolution to clarify the differences between (a) the geometrical effects at different surfaces, (100) and (110), and (b) between the oxidation by pure O2 and H2O. There is a well established but not very dramatic differences in the O 2p induced band between the two crystal surfaces when oxidizing with O2. The Al 2p spectra reveal an initial state of oxidation with less O atoms per Al atom than in Al2O3ate disappears at higher exposures with O2 while it is absent when oxidizing with H2O. Only about 1/4 of the exposure with H2O is needed to obtain the same coverage as with O2.  相似文献   

11.
Electron energy-loss spectroscopy has been applied to the study of Si(111) surfaces covered with H2S, H2O and O2 at room temperature and the surfaces annealed at ~ 600°C. The experimental results strongly suggest that H2S and H2O adsorb in the molecular states at room temperature. It is proposed that O2 is first adsorbed in a molecular state, then adsorbs as atoms, and finally oxidizes forming SiO2.  相似文献   

12.
In this research the effect of steps (lower coordinated surface atoms) and the presence of pre-adsorbed oxygen on the activation energy of water are studied with DFT. Without oxygen water activation is found to be structure insensitive. When oxygen is adsorbed on the surface and acts as the acceptor for the hydrogen at the step edge, the barrier will decrease significantly.  相似文献   

13.
Broadening and shifting of the 211-202 transition of H216O, H217O, H218O by pressure of water, nitrogen and oxygen were precisely measured at room temperature using spectrometer with radio-acoustic detection of absorption. Shift parameters for all studied lines as well as broadening parameters of H217O, H218O lines were measured for the first time. Comparison of obtained results with previously known experimental and theoretical data is presented.  相似文献   

14.
The electron-stimulated desorption (ESD) of D and H ions from condensed D2O and H2O films is investigated. Three low-energy peaks are observed in the ESD anion yield, which are identified as arising from excitation of 2B1, 2A1 and 2B2 dissociative electron attachment (DEA) resonances. Additional structure is observed between 18 and 32 eV, which may be due to ion pair formation or to DEA resonances involving the 2a1 orbital. The ion yield resulting from excitation of the 2B1 resonance increases as the film is heated. We attribute the increase in the ion yield to thermally induced hydrogen bond breaking near the surface, which enhances the lifetimes of the excited states that lead to desorption.  相似文献   

15.
The interaction of water with the surface of polyphenylacetylene (PPA) films is dependent on the preparation and casting procedures. Films with an oxygen-free surface were obtained. Molecular adsorption of H2O is indicated to be the major phenomenon by XPS. On annealing up to ≈ 250°C partial loss of adsorbed water occurs. The thickness of the reacted surface layer is estimated to be ≈ 6.0Å when the PPA film is exposed to water vapour at pressure p ≈ 760 Torr.  相似文献   

16.
He(II) photoelectron spectra of LaCoO3 and La0.7Sr0.3CoO3 have been recorded. Spectra of LaCoO3 were recorded at various temperatures in the range 77 K ? T ? 873 K and changes in the spectra were observed corresponding to the variation of the Co spin state in the lattice.  相似文献   

17.
The interaction of water vapour with clean as well as with oxygen precovered Ni(110) surfaces was studied at 150 and 273 K, using UPS, ΔΦ, TDS, and ELS. The He(I) (He(II)) excited UPS indicate a molecular adsorption of H2O on Ni(110) at 150 K, showing three water-induced peaks at 6.5, 9.5 and 12.2 eV below EF (6.8, 9.4 and 12.7 eV below EF). The dramatic decrease of the Ni d-band intensity at higher exposures, as well as the course of the work function change, demonstrates the formation of H2O multilayers (ice). The observed energy shift of all water-induced UPS peaks relative to the Fermi level (ΔEmax = 1.5 eVat 200 L) with increasing coverage is related to extra-atomic relaxation effects. The activation energies of desorption were estimated as 14.9 and 17.3 kcal/mole. From the ELS measurements we conclude a great sensitivity of H2O for electron beam induced dissociation. At 273 K water adsorbs on Ni(110) only in the presence of oxygen, with two peaks at 5.7 and 9.3 eV below EF (He(II)), being interpreted as due to hydroxyl species (OH)δ? on the surface. A kinetic model for the H2O adsorption on oxygen precovered Ni(110) surfaces is proposed, and verified by a simple Monte Carlo calculation leading to the same dependence of the maximum amount of adsorbed H2O on the oxygen precoverage as revealed by work function measurements. On heating, some of the (OH)δ? recombines and desorbs as H2O at ? 320 K, leaving behind an oxygen covered Ni surface.  相似文献   

18.
19.
We have used flash desorption mass spectroscopy to study the adsorption and desorption of H2 and CO from clean titanium at room temperature. CO flash desorption occurs predominantly from a low temperature state whose binding energy is 20.3 kcal/mole. H2 flash desorption is complex. Only one peak is observed; it is broader than flash desorption spectra normally corresponding to first or second order kinetics. The shift in the peak temperature to lower values with increasing coverage has been analysed using the isothermal desorption rate technique. The apparent order of H2 desorption is 1.5 and is independent of temperature from 888 to 1077 K. The activation energy is 21 kcal/mole. These results will be discussed in terms of absorption of H2 into titanium and thermal decomposition of a titanium hydride compound.  相似文献   

20.
Spin-spin relaxation measurements support the introduction in CuCl2·2H2O of an antisymmetric exhange as proposed by Dzialoshinsky and Moriya.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号