首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Surface science》1986,167(1):27-38
The initial stage of adsorption of Pd on a Si(111)7 × 7 surface has been studied by means of Auger electron spectroscopy (AES), electron energy loss spectroscopy (EELS) and surface work-function change. For Pd deposition at room temperature (RT) the Si(LVV) Auger signal intensity decays in a broken linear line. The structure factor, defined as the intensity ratio of the subpeak to the main one in Si(LVV) Auger spectra, increases up to a maximum around one monolayer coverages. In EELS spectra two peaks, characteristics of Pd, appear at the completion of the first Pd layer. Pd atoms deposited on Si(111) at RT form initially flat layers of a few monolayers height without mixing with substrate Si atoms. For Pd deposition at a moderately high temperature (MT) of about 300°C, however, the structure factor for Si(LVV) Auger spectra does not change. EELS peaks, characteristic of Si substrate, remain clearly even beyond one monolayer coverage. Pd atoms deposited at MT are unstable and easily diffuse into the bulk. We present evidences to support the “screening” model for the bond-breaking mechanism at the Pd/Si interface.  相似文献   

2.
Adsorption of CO on a Pd monolayer (ML) supported on Mo(110) has been studied using low energy electron diffraction (LEED), temperature programmed desorption (TPD), and high resolution electron energy loss spectroscopy (HREELS). Three ordered CO substructures denoted as are observed with LEED. The binding energy of C0 on the 1.0 ML Pd/Mo(110) surface is reduced by 12 kcal/mol relative to the Pd(111) surface, consistent with previous results for supported palladium monolayers on other substrates. Two vibrational states of C0 are observed near 1950 and 2050 cm−1, with the feature at the lower wavenumber having the smaller binding energy.  相似文献   

3.
The co-adsorption of oxygen and hydrogen on Rh(111) at temperatures below 140 K has been studied by thermal desorption mass spectrometry, Auger electron spectroscopy, and lowenergy electron diffraction. The co-adsorption phenomena observed were dependent upon the sequence of adsorption in preparing the co-adsorbed overlayer. It has been found that oxygen extensively blocks sites for subsequent hydrogen adsorption and that the interaction splits the hydrogen thermal desorption into two states. The capacity of the oxygenated Rh(111) surface for hydrogen adsorption is very sensitive to the structure of the oxygen overlayer, with a disordered oxygen layer exhibiting the lowest capacity for hydrogen chemisorption. Studies with hydrogen pre-adsorption indicate that a hydrogen layer suppresses completely the formation of ordered oxygen superstructures as well as O2 desorption above 800 K. This occurs with only a 20% reduction in total oxygen coverage as measured by Auger spectroscopy.  相似文献   

4.
Oxygen adsorption on a Mo(111) surface is investigated at low pressures (10?7 to 10?5 Pa) and room temperature by Auger electron spectroscopy (AES), low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS). In agreement with previous studies it is established that the surface is not reconstructed during adsorption and the oxygen forms no ordered structures. On the basis of kinetic and spectroscopy data, the formation of two adsorption states on the surface within 1 monolayer is established. The valence band of a clean surface is studied in detail. An attempt is made to ascribe the peaks obtained to definite d states. The interaction between O2 and Mo(111) is discussed in terms of the results obtained and a comparison with the O2/W(111) system is made.  相似文献   

5.
The surface reaction between coadsorbed carbon monoxide and atomic oxygen has been characterized using high resolution electron energy loss spectroscopy, coupled with temperature programmed reaction spectroscopy on a Pt(111) surface characterized using Auger electron spectroscopy and low energy electron diffraction. Preferential oxidation of bridge bonded CO is not observed despite the fact that bridge bonded CO is adsorbed less vigorously than linearly bound CO. Saturation of the Pt(111) surface with one quarter of a monolayer of atomic oxygen completely suppresses the adsorption of bridge bonded CO. However, substantial coverages of bridge bonded CO can be coadsorbed if the Pt(111) surface is only partially saturated with atomic oxygen. The vibrational data for reaction of coadsorbed CO and atomic oxygen is consistent with a reaction mechanism involving reaction of mobile CO along oxygen island perimeters.  相似文献   

6.
Supported Pd catalysts are prepared in UHV on ZnO (0001) (oxygen face). By repeated cycles consisting of Pd deposition and an annealing step total amounts from 0.3 to 130 monolayers (ML) are reached. The growth mode of Pd is deduced indirectly from an analysis of Auger peak heights as a function of deposition amount and annealing temperature. At 300 K substrate temperature Pd, deposited with a rate of 1.2 ML/min, weakens the zinc and oxygen Auger yields in such a way that up to a deposit of 10 ML a constant ratio is maintained. This is ascribed to an agglomeration of the Pd deposit into clusters much higher than the escape depth. A critical inititial height of the clusters is derived as 6 ML (14.6 Å). The height increases linearly with Pd deposit. Above a deposit of 10 ML the oxygen Auger yield decreases much faster than the zinc yield. The data can be fitted using the assumption of a homogeneous Pd film on the free areas between the clusters. Annealing of faces with up to 130 ML Pd deposit at temperatures up to 970 K reestablishes free substrate area between the clusters. No evidence is found for zinc or oxygen atoms on top of the clusters. Pd does not desorb but at constant substrate Auger signals the Pd signal is significantly reduced upon annealing above room temperature. Therefore, it is concluded that appreciable amounts of Pd diffuse into the bulk or react with the substrate. After Pd deposition at room temperature only a faint (1 × 1) LEED pattern appears but on annealed faces with less than 35 ML Pd deposit intense (1 × 1) LEED spots of the ZnO lattice prevail indicating epitaxial growth. At higher coverages additional spots with hexagonal symmetry show up, arising from a Pd (111) structure aligned parallel to the ZnO lattice. In addition, TDS results of ethanol decomposition are discussed: The presence of 5.2 ML Pd deposit on ZnO (0001) increases at low temperatures the rates of the products already known from the uncovered face. This implies that a part of the ZnO surface is still accessible for desorption. Above 10 ML Pd deposit also CO from a total oxidation appears  相似文献   

7.
The adsorption of oxygen on the Pt(S)-[12(111) × (111) surface has been studied by Auger electron spectroscopy, low energy electron diffraction and thermal desorption spectroscopy. Two types of adsorbed oxygen have been identified by thermal desorption spectroscopy and low energy electron diffraction: (a) atoms adsorbed on step sites; (b) atoms adsorbed on terrace sites. The kinetics of adsorption into these two states can be modeled by considering sequential filling of the two adsorbed atomic states from a mobile adsorbed molecular precursor state. Adsorption on the step sites occurs more rapidly than adsorption onto the terraces. The sticking coefficient for oxygen adsorption is initially 0.4 on the step sites and drops when the step sites are saturated. The heat of desorption from the step site (45 ± 4 kcal/mole) is about 15% larger than the heat of desorption from the terraces.  相似文献   

8.
《Applied Surface Science》1987,29(3):287-299
The formation and epitaxial orientation of Pd silicide on clean and native oxide covered Si(100) and (111) surfaces was studied by Auger electron spectroscopy (AES) and reflection high energy electron diffraction (RHEED). Pd was vapor deposited in UHV on to the substrates up to thicknesses of about 6 nm. On clean Si substrates, ultra-thin Pd deposits reacted to form Pd2Si already at room temperature, as detected by a characteristic splitting of the Si LVV Auger peak. However, a polycrystalline structure with very small crystallite sizes was indicated by diffuse ring patterns in RHEED. When the initial thickness of the Pd deposit exceeded about 3 nm, the diffraction ring pattern of unreacted metal developed. During annealing of room temperature deposits of Pd, the (100) and (111) substrates behaved differently. Larger crystallites formed on Si(100), but the films remained polycrystalline, though textured. On Si(111), virtually perfect epitaxial re-orientation of the silicide was found. When the substrates were initially covered with native oxide of about 2 nm thickness, silicide formation started at about 200°C, resulting in polycrystalline, but strongly textured Pd2Si. Upon further annealing at temperatures up to 600°C, an additional phase of epitaxially oriented Pd2Si developed on Si(111), similar to that on clean Si(100). In all experiments, extended annealing at temperatures above 250°C caused segregation of Si to the surface. This was accompanied by the development of an additional peak in the Auger electron spectra at about 313 eV, which we assign to a plasmon loss of δE = 17 eV in the Si overlayer, being excited by Pd Auger electrons of energy 330 eV.  相似文献   

9.
We study the adsorption and reaction of CO2 as a function of temperature between 100 and 700 K in the presence of Na on a Pd(111) surface using high resolution electron energy loss spectroscopy. While CO2 does not react with a clean Pd(111) surface, we find various reaction channels on the Na precovered Pd(111) surface depending on the Na coverage. At intermediate coverage a bent CO28− species with characteristic vibrational bands can be unambiguously identified. This species is stable up to 200 K, and dissociates into CO and oxygen similar to its behaviour on other surfaces, and as reported in a previous photoemission study [Wambach et al., Surface Sci. 209 (1989) 159]. In case the surface has been oxygen contaminated before Na and CO2 exposure surface carbonates can be observed.  相似文献   

10.
Auger electron spectroscopy (AES) has been employed to examine the metal surface composition of PdAu and PdAg alloys as microspheres and as alumina-supported crystallites. For the PdAu system the observed PdAu ratios at the surface correspond closely to those of the bulk both for the microspheres and crystallites. However in the case of supported PdAg, the surface exhibits silver-enrichment relative to the bulk. By means of the regular solution monolayer model the results are interpreted theoretically and the binding energies between the dissimilar metal atoms are computed.  相似文献   

11.
The ytterbium intercalation under a graphite monolayer formed on the Ni(111) surface has been studied by Auger electron and angle-resolved photoelectron spectroscopy. The features of the electronic structure of the intercalate-like thin-film compound formed in this process are analyzed. It is shown that the energy shift of the π and σ states in the valence band toward higher binding energies (by ~2 and ~1 eV, respectively) can be described in terms of hybridization of the carbon π states in the graphite monolayer with the d states of the underlying metal.  相似文献   

12.
The quantitative analysis of the evolution of Pd and Si N(E) Auger peak amplitudes has been carried out as a function of Pd concentration on a Si(111) surface. Modelization of these evolutions has allowed us to conclude that the formation of the Pd2Si silicide occurs from the beginning of Pd adsorption even at room temperature.  相似文献   

13.
《Surface science》1986,177(2):353-362
The growth of Pd ultra-thin layers on a Ag surface is investigated by Auger electron spectroscopy and surface reflectance spectroscopy. At low temperature (− 150°C) the growth follows the Frank-Van der Merwe mode. At room temperature, a certain amount of Pd atoms migrate into the silver substrate. The optical spectra are interpreted within the virtual bound d level model.  相似文献   

14.
The processes accompanying the formation of ytterbium films on the Si(111) surface at room temperature are investigated by the contact potential difference method, Auger electron spectroscopy, low-energy electron diffraction, and thermal desorption spectroscopy. It is shown that the grown metal films are uniform in thickness and that Si atoms virtually do not dissolve in the films. The atoms of the silicon substrate can diffuse in limited amounts into the Yb metal film only when the surface is bombarded by high-energy primary electron beams employed in Auger electron spectroscopy. The results obtained permit the conclusion that the previously observed oscillations of the work function in Yb-Si(111) thin-film structures cannot originate from dissolution of silicon atoms in the ytterbium film.  相似文献   

15.
Oxygen adsorption and desorption were characterized on the kinked Pt(321) surface using high resolution electron energy loss spectroscopy, thermal desorption spectroscopy and Auger electron spectroscopy. Some dissociation of molecular oxygen occurs even at 100 K on the (321) surface indicating that the activation barrier for dissociation is smaller on the Pt(321) surface than on the Pt(111) surface. Molecular oxygen can be adsorbed at 100 K but only in the presence of some adsorbed atomic oxygen. The dominance of the v(OO) molecular oxygen stretching mode in the 810 to 880 cm?1 range indicates that the molecular oxygen adsorbs as a peroxo-like species with the OO axis parallel or nearly parallel to the surface, as observed previously on the Pt(111) surface [Gland et al., Surface Sci. 95 (1980) 587]. The existence of at least two types of peroxo-like molecular oxygen is suggested by both the unusual breadth of the v(OO) stretching mode and breadth of the molecular oxygen desorption peak. Atomic oxygen is adsorbed more strongly on the rough step sites than on the smooth (111) terraces, as indicated by the increased thermal stability of atomic oxygen adsorbed along the rough step sites. The two forms of adsorbed atomic oxygen can be easily distinguished by vibrational spectroscopy since oxygen adsorbed along the rough step sites causes a v(PtO) stretching mode at 560 cm?1, while the v(PtO) stretching mode for atomic oxygen adsorbed on the (111) terraces appears at 490 cm?1, a value typical of the (111) surface. Two desorption peaks are observed during atomic oxygen recombination and desorption from the Pt(321) surface. These desorption peaks do not correlate with the presence of the two types of adsorbed atomic oxygen. Rather, the first order low temperature peak is a result of the fact that about three times more atomic oxygen can be adsorbed on the Pt(321) surface than on the Pt(111) surface (where only a second order peak is observed). The heat of desorption for atomic oxygen decreases from about 290kJ/mol (70 kcal/mol) to about 196 kJ/mol (47 kcal/mol) with increasing coverage. Preliminary results concerning adsorption of molecular oxygen from the gas phase in an excited state are also briefly discussed.  相似文献   

16.
Ultraviolet photoemission spectroscopy using HeI (21.2 eV) resonance photons has been used to study cleaved Ge(111) surfaces which were also characterized by Auger electron spectroscopy and low energy electron diffraction. Higher effective resolution for both bulk and surface states was found than for recent measurements employing synchrotron radiation.  相似文献   

17.
F. Solymosi  J. Kiss 《Surface science》1981,108(2):368-380
The adsorption and surface reaction of cyanogen on clean and oxygen covered Cu(111) have been investigated. From electron energy loss measurements, thermal desorption spectroscopy and electron beam effects in Auger spectroscopy, it is proposed that cyanogen adsorbs dissociatively on Cu(111) at 300 K. The activation energy for the desorption was calculated to be 180 kJ/mol. Cyanogen adsorption onto oxygen predosed Cu(111) is inferred to produce the NCO surface species. This interpretation was aided by data of electron energy loss measurements and from HNCO adsorption onto Cu(111) at 300 K. A reaction began in the co-adsorbed layer above 400 K, yielding CO2 and N2.  相似文献   

18.
The effect of ultrahigh vacuum deposition of Ge below and at monolayer (ML) coverage onto a 7 × 7 reconstructed clean Si(111) surface held at room temperature is studied by low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and photoemission yield spectroscopy (PYS). The results are compared to those obtained on 2 × 1 reconstructed clean Si(111) : (i) the Si dangling bond states are replaced by Ge dangling bond states at submonolayer coverages in both cases; (ii) the 7 × 7 reconstruction persists below 1 ML, it is not replaced by a ? 3 × ? 3 R30° at 1/3ML as it was on the 2 × 1; and (iii) the coverage below 1 ML is not homogeneous on the 7 × 7 reconstruction. This behaviour can be explained by the influence of the inhomogeneties associated with the 7 × 7 reconstruction.  相似文献   

19.
L. Surnev 《Surface science》1981,110(2):439-457
Oxygen adsorption on a clean Ge(111) surface has been studied in the temperature range 300–560 K by means of Auger electron spectroscopy (AES), thermal desorption (TD), work function (WF) measurements, and electron energy loss spectroscopy (ELS). The adsorption and WF kinetics at 300 K exhibit a shape different from those observed at higher adsorption temperatures. At 300 K oxygen only removes the empty dangling bond surface state, whereas at higher temperature new loss transitions involving chemically shifted Ge 3d core levels appear. The findings imply that at 300 K only a chemisorption oxygen state exists on the Ge(111) surface whereas the formation of an oxide phase requires higher temperatures. The shapes of the TD curves show that the desorption of GeO follows 12 order desorption kinetics.  相似文献   

20.
The diffusion of silver the (111), (100), and (110) silicon surfaces is studied by Auger electron spectroscopy and low-energy electron diffraction. The mechanisms of diffusion over the (111) and (110) surfaces are revealed, and the temperature dependences of diffusion coefficients are measured. An anisotropy of silver diffusion over the (110) surface is detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号