首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interface formation, electrical properties and the surface morphology of multilayered Ta/Ni/Ta/SiC contacts were reported in this study. It was found that the conducting behavior of the contacts so fabricated is much dependent on the metal layer thickness and the subsequent annealing temperature. Auger electron spectroscopy (AES) and X-ray diffraction analyses revealed that Ni2Si and TaC formed as a result of the annealing. The Ni atoms diffused downward to metal/SiC interface and converted into Ni2Si layer in adjacent to the SiC substrate. The released carbon atoms reacted with Ta atoms to form TaC layer. Ohmic contacts with specific contact resistivity as low as 3 × 10−4 Ω cm2 have been achieved after thermal annealing. The formation of carbon vacancies at the Ni2Si/SiC interface, probably created by dissociation of SiC and formation of TaC during thermal annealing, should be responsible for the ohmic formation of the annealed Ta/Ni/Ta contacts. The addition of Ta into the Ni metallization scheme to n-SiC restricted the accumulation of carbon atoms left behind during Ni2Si formation, improving the electrical and microstructure properties.  相似文献   

2.
The presence of a buried, ultra-thin amorphous interlayer in the interface of room temperature deposited Ni film with a crystalline Si(100) substrate has been observed using cross sectional transmission electron microscopy (XTEM). The electron density of the interlayer silicide is found to be 2.02 e/?3 by specular X-ray reflectivity (XRR) measurements. X-ray diffraction (XRD) is used to investigate the growth of deposited Ni film on the buried ultra-thin silicide layer. The Ni film is found to be highly textured in an Ni(111) plane. The enthalpy of formation of the Ni/Si system is calculated using Miedema’s model to explain the role of amorphous interlayer silicide on the growth of textured Ni film. The local temperature of the interlayer silicide is calculated using enthalpy of formation and the average heat capacity of Ni and Si. The local temperature is around 1042 K if the interlayer compound is Ni3Si and the local temperature is 1389 K if the interlayer compound is Ni2Si. The surface mobility of the further deposited Ni atoms is enhanced due to the local temperature rise of the amorphous interlayer and produced highly textured Ni film. Received: 2 March 2000 / Accepted: 28 March 2000 / Published online: 11 May 2000  相似文献   

3.
The local structure around the Ni atom in Ni2Si has been studied by measuring and analyzing the Extended Energy Loss Fine Structure above the Ni M2,3 edge. The radial distribution function we found is characterized by the efficiency of the only nearest neighbours Si atoms. We also obtained the phase shift of the Ni-Si pair and the backscattering amplitude.  相似文献   

4.
We have studied the surface chemistry of the nickel-oxygen system using both temperature changes and ion bombardment as techniques for elucidating the surface structure. The spectra of metallic Ni, NiO and Ni2O3 were characterized from samples prepared directly in the spectrometer. The Ni2O3 species could be distinguished from an authentic Ni(OH)2 sample from both the X-ray photoelectron lines and the Auger transitions. The oxides of NiO and Ni2O3 could be prepared by bombardment with low energy (400eV) O2+ ions as well as by exposure of Ni to oxygen at reduced pressure (~ 100 torr). The Ni2O3 was found to be present on most nickel-oxygen surfaces except those prepared by exposing Ni to air for many hours at high temperature (> 600°C), indicating that the stability of Ni2O3 decreased as the temperature increased. Exposure of both NiO and Ni2O3 to 400 eV Ar+ ion bombardment caused reduction to metallic Ni. This observation has also been noted for several other oxides and a prediction of whether or not reduction should be observed is presented by examining the free energy of formation of the molecule.  相似文献   

5.
《Applied Surface Science》1986,27(2):143-150
Ultrathin nickel layers (0–40 Å) on Si(111) were characterized using reflection high energy electron diffraction (RHEED) in conjunction with high-resolution Rutherford backscattering spectrometry (RBS). RBS shows that Ni, when deposited on Si(111) at 300 K, reacts with the Si to form clusters with an average composition close to Ni2Si, until the clusters coalesce into a continuous layer. RHEED measurements show that the microstructure of this layer also matches the Ni2Si composition: the film consists mainly of very fine-grained Ni2Si crystallites (∼ 15 Å grain size) which are randomly oriented. Additional Ni deposition results in the accumulation of an unreacted fine-grained Ni layer on top of the silicide film.  相似文献   

6.
Interface compound formation in Ni/In film couples has been studied by means of the PAC method using radioactive111In probe atoms. Subsequent occurrence of the compounds Ni10In27, Ni2In3, NiIn and Ni3In has been observed after isochronal annealing. Interdiffusion was found to start at temperatures about 250K whereby Ni propagates into the In film.  相似文献   

7.
Gd-Ni二元系合金相图   总被引:1,自引:0,他引:1       下载免费PDF全文
潘毓英  郑建宣  李明  杨华 《物理学报》1986,35(5):677-680
本文用X射线衍射及差热分析方法测定了Gd-Ni二元系合金相图。在这个二元系中,观察到如下9个金属间化合物:Gd3Ni(735℃包晶分解),Gd3Ni2。(690℃包晶分解),GdNi(1280℃同成分熔化),GdNi2(1010℃包晶分解),GdNi3(1110℃包晶分解),Gd2Ni7(1200℃包晶分解),GdNi4(1270℃ 关键词:  相似文献   

8.
Abstract

The growth of Ni3Si surface films on Ni-12.7at%Si alloys has been measured during lMeV electron irradiation. Stereoscopic techniques were used to determine film thickness from dark field images formed from Ni3Si superlattice reflections. Parabolic growth kinetics are observed at lower temperatures. However, at higher temperatures, deviations from parabolic kinetics are observed after short irradiation times. Such deviations have not been observed in bulk specimens during bombardment with energetic ions and, therefore, may be due to foil thickness effects.  相似文献   

9.
Ni–Ni3Si composites are prepared by the Bridgman directional solidification technology under different growth conditions, aiming to improve the ductility of the Ni3Si compound and investigate the relationship between solidification microstructure and the properties. Microstructure of the Ni–Ni3Si hypoeutectic in situ composites transforms from regular lamellar eutectic to cellular structure then to dendritic crystal with the increase of the solidification rate. Ni–Ni3Si eutectic composites display regular lamellar eutectic structure at the solidification rate R=6.0–40.0 μm/s and the lamellar spacing is decreased with the increase of the solidification rate. Moreover, the Ni–Ni3Si hypoeutectic composites present lower micro-hardness than pure Ni3Si, which indicate Ni–Ni3Si hypoeutectic composites have higher ductility, whereas the ductility of the Ni–Ni3Si eutectic composites has scarcely been improved. This is caused by the formation of the metastable Ni31Si12 phase in the Ni–Ni3Si eutectic composites.  相似文献   

10.
X-ray photoelectron spectroscopy (XPS) and work-function measurements were used in combination to investigate the initial steps of Permalloy (Ni80Fe20) oxidation at room temperature. They showed that, after oxygen saturation, the surface is covered by nickel oxide (NiO), nickel hydroxide (Ni(OH)2) and iron oxides (FexOy), and there is no preferential oxidation. Iron oxidation proceeds through the formation of FeO (Fe2+) followed with Fe2O3 growth (Fe3+). The oxidation is governed by a dissociative Langmuir-type oxidation: the sticking coefficient is decreasing over oxygen exposure. Oxidation continues by oxygen dissolution into the first layers to form a nano-oxide of about 8 Å in thickness.  相似文献   

11.
The influence of chromium and sodium on the nickel oxidation kinetics has been studied as a function of temperature (1373-1673 K) and oxygen activity (10−105 Pa O2), using microthermogravimetric techniques. It has been shown that the oxidation of Ni-Cr and Ni-Na alloys, like that of pure nickel, follows strictly the parabolic rate law being thus diffusion controlled. In agreement with the defect model of Ni1−yO, it has been found that the oxidation rate of the Ni-Cr alloy is higher than that of pure nickel, the reaction rate is pressure independent and the activation energy of this process is lower. This implies that the concentration of double ionized cation vacancies in a Ni1−yO-Cr2O3 solid solution is fixed on a constant level by trivalent chromium ions, substitutionally incorporated into the cation sublattice of this oxide. In the case of the Ni-Na alloy, on the other hand, the oxidation rate is lower than that of pure nickel, the activation energy is higher and the oxidation rate increases more rapidly with oxygen pressure. These results can again be explained in terms of the doping effect, by assuming that univalent sodium ions dissolve substitutionally in the cation sublattice of nickel oxide.  相似文献   

12.
The kinetics of Ni2Si growth from pure Ni and from Ni0.93V0.07 films on (111) and (100) silicon has been studied by the combination of He+ backscattering, x-ray diffraction, Auger electron spectroscopy (AES) and transmission electron microscopy (TEM) techniques. The activation energies are 1.5 and 1.0 eV for pure Ni and Ni(V) films, respectively while the pre-exponential factors in Ni(V) are 4–5 orders of magnitude smaller than in the pure Ni case. The variations in the measured rates are related to the different grain size of the growing suicide layers. The vanadium is rejected from the silicide layer and piles up at the metalsilicide interface.  相似文献   

13.
The corrosion behavior of the intermetallic compounds homogenized, Ni3(Si,Ti) (L12: single phase) and Ni3(Si,Ti) + 2Mo (L12 and (L12 + Niss) mixture region), has been investigated using an immersion test, electrochemical method and surface analytical method (SEM; scanning electron microscope and EPMA: electron probe microanalysis) in 0.5 kmol/m3 H2SO4 and 0.5 kmol/m3 HCl solutions at 303 K. In addition, the corrosion behavior of a solution annealed austenitic stainless steel type 304 was studied under the same experimental conditions as a reference. It was found that the intergranular attack was observed for Ni3(Si,Ti) at an initial stage of the immersion test, but not Ni3(Si,Ti) + 2Mo, while Ni3(Si,Ti) + 2Mo had the preferential dissolution of L12 with a lower Mo concentration compared to (L12 + Niss) mixture region. From the immersion test and polarization curves, Ni3(Si,Ti) + 2Mo showed the lowest corrosion resistance in both solutions and Ni3(Si,Ti) had the highest corrosion resistance in the HCl solution, but not in the H2SO4 solution. For instance, it was found that unlike type 304 stainless steel, these intermetallic compounds were difficult to form a stable passive film in the H2SO4 solution. The results obtained were explained in terms of boron segregation at grain boundaries, Mo enrichment and film stability (or strength).  相似文献   

14.
X-ray photoelectron spectroscopy measurements on Ni in the alloys Ni, Ni50Zn50, Ni20Zn80 and Ni50Al50 have been made and confirm previous measurements of the band structure. The satellite lines on the Ni 2p and 3s lines are found to be present in the spectra even when the density of 3d states at the Fermi energy is low.  相似文献   

15.
Silicide formation induced by thermal annealing in Ni/Si thin film system has been investigated using glancing incidence X-ray diffraction (GIXRD) and Auger electron spectroscopy (AES). Silicide formation takes place at 870 K with Ni2Si, NiSi and NiSi2 phases co-existing with Ni. Complete conversion of intermediate silicide phases to the final NiSi2 phase takes place at 1170 K. Atomic force microscopy measurements have revealed the coalescence of pillar-like structures to ridge-like structures upon silicidation. A comparison of the experimental results in terms of the evolution of various silicide phases is presented.  相似文献   

16.
The 773 K isothermal section of the Dy–Ni–Si ternary system was investigated and constructed by X-ray powder diffraction in this paper. Eighteen ternary phases (DyNiSi, DyNi2Si2, DyNiSi2, Dy2Ni3Si5, DyNiSi3, Dy2NiSi3, Dy3Ni6Si2, DyNi10Si2, Dy4NiSi7, DyNi2Si, DyNi5Si3, DyNi4Si, Dy3NiSi2, DyNi6Si6, Dy8Ni31Si11, Dy3Ni2Si4, Dy4Ni5Si and Dy9Ni2Si14) were confirmed to exist in this work. In those ternary phases, Dy9Ni2Si14 is a new phase, Dy2NiSi3 and Dy4NiSi7 have solid solution phenomena and the solid solution ranges are Dy33.3Ni14.7–18.7Si52–48 and Dy4Ni0.3–1.2Si7.7–6.8, respectively. We constructed 14 two phase regions and 52 three phase regions in the Dy–Ni–Si ternary phase diagram at 773 K. Because the phase relation is not very clear between 66.7 and 50 Si at.% in the Dy–Si binary system, we use dot lines to estimate tentative phase regions in this region.  相似文献   

17.
Photoelectron spectroscopic studies of the oxidation of Ni(111), Ni(100) and Ni(110) surfaces show that the oxidation process proceeds at 295 and 485 K in two distinct steps: a fast dissociative chemisorption of oxygen followed by oxide nucleation and lateral oxide growth to a limiting coverage of 3 NiO layers. The oxygen concentration in the 295 K saturated oxygen layer on Ni(111) was confirmed by 16O(d,p) 17O nuclear microanalysis. At 295 and 485 K the oxide growth rates are in the order Ni(110) > Ni(111) > Ni(100). At 77 K the oxygen uptake proceeds at the same rate on all three surfaces and shows a continually decreasing sticking coefficient to saturation at ~2.1 layers (based upon NiO). An O 1sb.e. = 529.7 eV is associated with NiO, and O ls b.e.'s of ~531.5 and 531.3 eV can be associated, respectively, with defect oxide (Ni2O3) or (in the presence of H2O) with an NiO(H) species. The binding energies (Ni 2p, O 1s) of this NiO(H) species are similar to those for Ni(OH)2. Defect oxides are produced by oxidation at 485 K, or by oxidation of damaged films (e.g. from Ar+ sputtering) and evaporated films. Wet oxidation (or exposure to air) of clean nickel surfaces and oxides, and exposure of thick oxide to hydrogen at high temperature results in an O 1s b.e. ~531.3 eV species. Nuclear microanalysis 2H(3He,p) 4He indicates the presence of protonated species in the latter samples. Oxidation at 77 K yields O 1s b.e.'s of 529.7 and ~531 eV; the nature of the high b.e. species is not known. Both clean and oxidised nickel surfaces show a low reactivity towards H2O; clean nickel surfaces are ~103 times less reactive to H2O than to oxygen.  相似文献   

18.
Results of first-principles calculations of the electronic structure for the ordered compounds Ni3Pd and Pd3Ni at the equilibrium volume with L12 structure reveal that the Ni atoms carry an enhanced moment and that an induced moment is found on the Pd atoms. The Ni moment is higher in Pd3Ni, whereas the Pd moment differs only slightly for these compounds. Large bulk moduli are found (341.34 GPa for Ni3Pd and 314.35 GPa for Pd3Ni), and an abrupt collapse of the magnetic moment is observed in Pd3Ni under lattice compression. The results indicate good conductivity for these compounds as well as half-metallicity for Ni3Pd.  相似文献   

19.
Effect of oxidation on transformation and deformation behavior was investigated in Ni-Ti alloy by comparing the as-oxidized specimen and the polished one. Ti's preferable reaction with oxygen results in the compounds such as Ni3Ti and Ni4Ti3, and the Ni-rich region between matrix and oxide. Martensitic transformation did not take place in the Ni-rich region due to the high Ni content while R phase transformation temperature decreased significantly. Oxidation deteriorated the superelasticity due to the formation of the compound as well as the Ni-rich region in which slip deformation occurs instead of induction of martensite.  相似文献   

20.
《Applied Surface Science》1987,29(2):194-222
Native oxide and in-situ prepared, dry oxides of Ni36Fe32Cr14P12B6 metallic glass have been investigated using angle resolved X-ray photoelectron spectroscopy (XPS or ESCA). The core-level binding energies of the various constituents of clean and oxidized samples have been determined accurately. A qualitative as well as quantitative estimation of elements in the outermost surface layers with and without oxidation is given by comparing XPS results obtained at normal and grazing emission angles. Stepwise oxidation leads to growing thickness of the surface oxide layer and to identification of different oxide species. The maximum thickness of the in-situ prepared oxide was determined as 3.5 nm compared to 4.5 nm for the native oxide. The sequence of oxidation is found to be Cr, Fe, B, P and Ni, but only some of the P and Ni atoms in the surface region are oxidized. The oxidation reaction induces diffusion of the constituents in the surface region as monitored by the change of relative intensities of the various peaks. For instance, P and especially Ni are strongly depleted in the oxide layer whereas Fe, Cr, and especially B are enriched. Differences between native and dry oxide have been observed and are discussed. The main difference is the abundance of carbon and oxygen containing species other than oxides in the native layer. Ar+ sputtering of the dry oxide layer leads to stochiometric changes in the surface region which are due to preferential sputtering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号