首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
高抗冲聚苯乙烯的增韧机理   总被引:12,自引:0,他引:12  
概述了以高抗冲聚苯乙烯(HIPS)为中心的有关橡胶增韧机理的理论,并且总结了界面,性能、粒子尺寸、粒 距及缠结密度等因素对橡胶/高分子共混体系性能的影响。  相似文献   

2.
膨胀型无卤阻燃HIPS热分解动力学及阻燃机理研究   总被引:1,自引:0,他引:1  
焦清介  吴中伟  臧充光  兰慧  Hui 《化学学报》2009,67(2):151-156
利用动态热失重法(TGA)研究了一种新型的膨胀型无卤阻燃高抗冲聚苯乙烯(HIPS)热降解反应动力学及阻燃机理, 通过对Kissinger模型和Coat-Redern (C-R)模型求解的热降解反应的动力学参数对比, 最终确定反应的动力学参数. 其中, 反应级数n的确定是通过一般反应对Ea/RTmax取值范围的限定, 利用最大热降解速率所对应的失重率αmax与n的关系, 确定其取值. 并采用TGA-FTIR及Py-GC/MS对材料气相产物及热裂解产物进行了阻燃机理的研究. 研究表明, 两种反应的热降解反应动力学参数基本一致, 其中阻燃HIPS的平均表观活化能小于纯HIPS, 说明在HIPS分解之前, 无卤阻燃剂已经开始分解, 释放的难燃气体(氨气及其衍生物、水蒸气等)在气相中起到阻燃的作用. 同时阻燃剂的添加, 促使反应向链转移反应飘移, 使燃烧产物中非单体化合物增加, 而在凝聚相中形成的致密的炭层结构也起到阻燃的效果.  相似文献   

3.
通过正交实验和单因素变量实验研究了射胶压力、射胶速度、保压压力、保压时间和冷却时间对高抗冲聚苯乙烯缺口冲击强度、弯曲强度、弯曲模量、拉伸屈服应力等力学性能的影响。结果表明,射胶速度、保压时间和冷却时间对高抗冲聚苯乙烯力学性能影响较小,而射胶压力、保压压力对高抗冲聚苯乙烯力学性能有显著影响,特别是缺口冲击强度和拉伸屈服应力。  相似文献   

4.
银纹是由孔穴和断裂面间相联结的原纤维组成的微小裂纹,其中原纤维的体积分数可达40%.银纹的体积分数与材料的韧性成正比.银纹化是高抗冲聚苯乙烯(HIPS)在脆化温度以下,抵抗破坏而消耗外界能量的主要方式.银纹的产生与材料内部不均一性所导致的应力集中有关.HIPS中的橡胶粒子能够控制银纹在本体中均匀地发展,这是HIPS高韧性的原因[1].HIPS的分散相是由聚丁二烯(PB)为连续相,PS为分散相构成的细胞结构粒子.通常HIPS中PB的含量为7%~8%,而细胞结构粒子的体积分数可高达23%,可见细胞结构粒子内部PS的含量为PB的…  相似文献   

5.
曲桂杰  刘景江 《应用化学》1994,11(2):105-107
在HIPS的聚丁二烯链上熔融接枝马来酸酐进行改性。接枝共聚物在30℃和50℃左右呈现双玻璃化转变。讨论了共混时间、反应物组成等对接枝率的影响。  相似文献   

6.
高抗冲聚苯乙烯/蒙脱土复合材料的阻燃性研究   总被引:11,自引:0,他引:11  
用经十六烷基三甲基溴化铵有机化改性的蒙脱土 (OMMT)与高抗冲聚苯乙烯 (HIPS)通过熔融插层法制备了HIPS OMMT复合材料 ,用X ray衍射技术对材料结构进行了表征 ,发现钠基蒙脱土 (Na+ MMT)和有机蒙脱土的层间距分别为 1 5 1nm和 2 18nm ,HIPS OMMT(5phr)复合材料中蒙脱土的层间距因聚合物大分子的插入扩大为 3 4 4nm ;而HIPS与Na+ MMT形成的复合材料的层间距与Na+ MMT的层间距相比却没有变化 ,表明未有机化处理土没有形成插层结构 .锥形量热仪的研究结果表明HIPS OMMT复合材料的热释放速率、质量损失速率以及生烟速率等燃烧特性参数均显著降低 ,具有较明显的阻燃性和抑烟性 ,而HIPS Na+ MMT非插层型复合材料只有在Na+ MMT很高填充量下 (>2 0phr)才有一定阻燃效果 .比较了铵盐对HIPS阻燃性的影响 ,结果表明铵盐自身的阻燃作用很小 ,主要是插层复合结构起阻燃作用 .  相似文献   

7.
采用密度泛函理论B3LYP/6-311G(d)方法,对聚苯乙烯(PS)热降解反应机理进行了研究。PS热降解的主要产物是苯乙烯,其次是甲苯、α-甲基苯乙烯、乙苯和二聚体等芳烃化合物。PS热降解反应主要包括主链C-C键均裂、β-断裂、氢转移和自由基终止等反应。针对以上各类反应进行了路径设计和理论计算分析,对参与反应的分子的几何结构进行了优化和频率计算,获得了各热降解路径的标准动力学和热力学参数。计算结果表明,苯乙烯主要由自由基的链端β-断裂反应形成;二聚体主要由分子内1,3氢转移的反应形成;α-甲基苯乙烯由分子内的1,2氢转移后进行β-断裂形成;甲苯由苯甲基自由基夺取主链上的氢原子形成;乙苯由苯乙基自由基夺取氢原子形成。动力学分析表明,苯乙烯形成所需要的能垒低于其他产物形成所需要的能垒,故苯乙烯为主要的热降解产物;这与相关实验结果基本一致。  相似文献   

8.
9.
用双螺杆挤出共混法制备了高抗冲聚苯乙烯 (HIPS) 有机蒙脱土 (Org MMT)插层纳米复合材料以及HIPS 无机蒙脱土 (MMT)常规复合材料 .分别用TGA和毛细管流变仪研究了它们的热性能与流变性能 ,并比较了两种结构材料的性能差异 .结果表明 ,纳米复合材料比纯HIPS和常规的复合材料具有更好的热稳定性和流动性 ,前者具有更强的剪切变稀行为 .此外 ,当蒙脱土达到纳米级分散时 ,复合材料的表面也变得更加平整光滑 .  相似文献   

10.
采用热失重、X-射线光电子能谱分析、氧指数及烟密度测试等方法研究了可膨胀石墨(EG)与聚磷酸铵(APP)复配膨胀阻燃硬质聚氨酯泡沫塑料(RPUF)的热降解、燃烧性能及产烟行为.在此基础上利用锥形量热仪考察了EG/APP对磷酸三(β-氯异丙基)酯(TCPP)阻燃RPUF体系燃烧性能的影响.研究表明,EG与APP间的相互作用导致了EG/APP体系高温阶段失重速率下降、残炭量显著上升;EG/APP与RPUF之间的成炭作用以APP的化学成炭为主.与RPUF比较,RPUF/EG/APP的氧指数由19.8%提高至35.4%的同时,烟密度没有显著上升.对比EG、APP及EG/APP阻燃RPUF,体系残炭量越高、炭层耐热氧化能力越强,氧指数就越大;残炭表面越致密,产烟量就越少.添加EG/APP可显著降低含卤体系RPUF/TCPP的热释放、烟释放及CO释放速率,体现了EG与APP复合体系物理与化学膨胀结合的优势.  相似文献   

11.
In this article, high impact polystyrene/organo Fe‐montmorillonite (HIPS/Fe‐OMT) nanocomposites were prepared by melting intercalation. The thermal stability of HIPS/Fe‐OMT nanocomposites increased significantly compared to that of HIPS examined in thermal degradation conditions. Kinetic evaluations were performed by Kissinger, Flynn‐Wall‐Ozawa, Friedman methods and multivariate nonlinear regression. Apparent kinetic parameters for the overall degradation were determined. The results showed that the activation energy of HIPS/Fe‐OMT nanocomposites was higher than that of HIPS. A very good agreement between experimental and simulated curves was observed in dynamic conditions. Their decomposition reaction model was a single‐step process of an nth‐order reaction.  相似文献   

12.
The kinetic parameters for the thermal degradation of high impact polystyrene (HIPS) in presence of some metal oxides exhibit reaction rate compensation effect. In thermal degradation of HIPS in presence of transition metal oxides different active centers act simultaneously as reaction sites and macroradicals are formed through random chain scission, disproportion or cyclization. Some oxides retard the polymer degradation through crosslinking and cyclization by the interaction of macroradicals with the double bond in butadiene. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
14.
It has been observed that poly(styrene peroxide) with a high molecular weight is thermally less stable than the same polymer with a low molecular weight. This has been explained as being due to the strain on the O-O bond due to the greater polymer chain length.  相似文献   

15.
Some toxaphene congeners are thermally unstable under commonly used gas chromatographic temperature conditions. The thermal stability of the 22 commercially available congeners has been studied at four different heating rates on four stationary phases Ultra 2 (5%-diphenyl-95%-dimethylpolysiloxane), a liquid crystalline phase (N,N′-bis(p-butoxy-benzylidene)-α,α′-bis-p-toluidine), Rtx-2330 (90%-biscyanopropyl-10%-phenylcyanopropyl-polysiloxane), and heptakis-(2,3,6-O-t-butyldimethylsilyl)-β-cyclodextrin (TBDMS-CD) diluted in OV-1701-OH. A substantial degradation of the congeners Parlar 39, 42, 50, 56, 58, and 62 could be observed on the cyanopropyl polysiloxane stationary phase. Furthermore, the applied temperature program and stationary phase had an influence on the signal areas. These factors are important for a quantitative analysis.  相似文献   

16.
The thermal decomposition of axinite was studied by means of thermal, FTIR and X-ray methods. Dehydroxylation takes place in a rather narrow temperature range, the maximum of the corresponding peak being at ca. 900°C. The decomposition products are anorthite, rankinite and probably also small amounts of other, partly amorphous phases. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Russian Journal of General Chemistry - Thermal decomposition of triethylindium has been studied under static conditions. The temperature dependence of the thermal decomposition rate is described by...  相似文献   

18.
The thermal decomposition of trimethylarsine was studied under static conditions at 352–409°C and a concentration of 8.7 × 10–3mol/l. The temperature dependence of the rate constant of thermal decomposition is described by the equation log k= 13.6 ± 0.7 – (224 ± 4) × 103/2.3RT.  相似文献   

19.
采用管式炉研究了950~1100 ℃温度区间C2F6的分解特性, 并研究了C2F6的初始浓度、反应温度、停留时间对C2F6分解率的影响. 实验结果表明, C2F6初始浓度越低、温度越高、反应时间越长, C2F6分解率就越高. 同时, 热解反应的反应级数应该介于0和1之间. 在温度为1100 ℃, C2F6初始浓度为223.21 μmol/L, 停留时间为2 s时, C2F6分解率高达90%. 根据Arrhenius方程计算, 在950~1100 ℃, C2F6热分解反应的活化能(Ea)为313.2 kJ/mol, 频率因子(A)为8.8×1011 s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号