首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A convenient method is suggested for calculating thermally averaged powers of the normal vibrational coordinates Q i by iteratively solving the Bloch integral equation with an anharmonic function of potential energy using multidimensional Hermite polynomials. Analytical formulas of the first approximation regarding anharmonicity constant have been obtained for the following moments of thermally averaged density: 〈Q 1〉, 〈 Q 1 2 〉, 〈Q 1 Q 2〉, 〈Q 1 3 〉 〈Q 1 3 〉, 〈Q 1 Q 2 Q 3〉, 〈Q 1 4 〉, 〈Q 1 2 Q 2 2 〉, 〈Q 1 Q 2/3〉, 〈Q 1 Q 2 Q 3 2 〉, 〈 Q 1 Q 2 Q 3 Q 4〉.  相似文献   

2.
Calculations are made using the equations Δr G = Δr H ? TΔr S and Δr X = Δr H ? Δr Q where Δr X represents the free energy change when the exchange of absorbed thermal energy with the environment is represented by Δr Q. The symbol Q has traditionally represented absorbed heat. However, here it is used specifically to represent the enthalpy listed in tabulations of thermodynamic properties as (H T  ? H 0) at T = 298.15 K, the reason being that for a given substance TS equals 2.0 Q for solid substances, with the difference being greater for liquids, and especially gases. Since Δr H can be measured, and is tangibly the same no matter what thermodynamics are used to describe a reaction equation, a change in the absorbed heat of a biochemical growth process system as represented by either Δr Q or TΔr S would be expected to result in a different calculated value for the free energy change. Calculations of changes in thermodynamic properties are made which accompany anabolism; the formation of anabolic, organic by-products; catabolism; metabolism; and their respective non-conservative reactions; for the growth of Saccharomyces cerevisiae using four growth process systems. The result is that there is only about a 1% difference in the average quantity of free energy conserved during growth using either Eq. 1 or 2. This is because although values of TΔr S and Δr Q can be markedly different when compared to one another, these differences are small when compared to the value for Δr G or Δr X.  相似文献   

3.
Using first-principles pseudo-potential plane wave method, the formation enthalpy ΔH, binding energy ΔE, elastic constants, and electronic structure were calculated and analyzed carefully for NiTiX (X = Cu, Fe) shape memory alloy. The results show that the Cu or Fe element prefers to occupy the Ni site in the NiTi matrix phase respectively. Compared with the NiTi matrix phase, the ΔH, ΔE, c 44 and c′ of NiTi (Cu) are similar to each other. However, the structural stability of the NiTi phase is improved obviously by the Fe alloying process. Simultaneously, the shear modulus c 44 and c′ of NiTi (Fe) are larger than those of the NiTi matrix phase. Furthermore, Milliken population results indicate that Q Cu–Ti is smaller than Q Ni–Ti after the Cu alloying process, but Q Fe–Ti is larger than Q Ni–Ti. The electron density difference shows that some covalent bonding exists between Fe and Ti elements. Based on the upward analysis, the difference in the phase stability and elastic constants of NiTiX (X = Cu, Fe) is the substantial mechanism for the different M s of NiTiX (X = Cu, Fe) although Cu or Fe substitutes for the same atom Ni elements in the NiTi matrix phase.  相似文献   

4.
A new approach is proposed for the estimation of boiling points (T b) of organic compounds at reduced pressure from their values at atmospheric pressure based on the application of a recurrent relation: T b (log P + Δlog P) = aT b (log P) + b. Estimation of coefficients in this relation for the compounds different by their chemical nature gives the following average values: a = 1.126, b = ?41.7. Successive application of this relation with Δlog P = 1 (that corresponds to 10-fold decrease in pressure) allows estimation of the T b values at the pressure values of 100, 10 and 1 torr from the value of T b (760 torr) by simple arithmetic calculation with an average accuracy about 8°C.  相似文献   

5.
Viscosities, η, and surface tensions, σ, of binary systems of phenetole (ethoxy benzene or ethyl phenyl ether) with N-methyl-2-pyrrolidone, N,N-dimethylformamide or with tetrahydrofuran were measured over the entire mole fraction range and at (298, 303 and 308) K. The experimental data was used to compute the deviations in viscosity, Δη, and surface tension, Δσ. Values of the excess Gibbs energy of activation G*E, surface entropy S σ and surface enthalpy H σ were calculated. Viscosity data of the binary systems were calculated using the Grunberg and Nissan and the three-body and four-body McAllister correlations. The Redlich–Kister method was used for evaluation of coefficients and standard deviations for Δη, Δσ and G*E. The results were interpreted in terms of the probable effect of molecular interactions between components as well as polarity.  相似文献   

6.
The crystal structure of [Os(NH3)5Cl][ReCl6] has been refined by X-ray powder analysis: a = 11.645(3) Å, b = 8.3788(2) Å, c = 15.277(4) Å, β = 91.029(6)°, V = 1490(1) Å3, d x = 3.163 g/cm3, space group P21/m, Z = 4. The thermolysis product of the salt in a hydrogen atmosphere is a solid substitution solution Os0.5Re0.5: a = 2.753(2) Å, c = 4.366(3) Å, space group P63/mmc; coherent scattering region (CSR) is ~230 Å.  相似文献   

7.
An alternative approach to calculating critical sizes lk of nucleation centers and work Ak of their formation upon crystallization from a supercooled melt by analyzing the variation in the Gibbs energy during the phase transformation is considered. Unlike the classical variant, it is proposed that the transformation entropy be associated not with melting temperature TL but with temperature T < TL at which the nucleation of crystals occurs. New equations for lk and Ak are derived. Based on the results from calculating these quantities for a series of compounds, it is shown that this approach is unbiased and it is possible to eliminate known conflicts in analyzing these parameters in the classical interpretation.  相似文献   

8.
Pseudostem of the Musa cavendishii banana plant was submitted to chemical pretreatments with acid (H2SO4 2%, 120 °C, 15 min) and with alkali (NaOH 3%, 120 °C, 15 min), saccharified by commercial enzymes Novozymes® (Cellic CTec2 and HTec2). The influences of the pretreatments on the degradation of the lignin, cellulose and hemicellulose, porosity of the surface, particle crystallinity, and yield in reducing sugars after saccharification (Y RS), were established. Different concentrations of biomass (70 and 100 g/L in dry matter (dm)), with different physical differences (dry granulated, crushed wet bagasse, and whole pseudostem), were used. The broth with the highest Y RS among the different strategies tested was evaporated until the concentration of reducing sugars (RS) was to the order of 100 g/L and fermented, with and without prior detoxification with active carbon. Fermentation was carried out in Erlenmeyer flasks, at 30 °C, initial pH 5.0, and 120 rpm. In comparison to the biomass without chemical pretreatment and to the biomass pretreated with NaOH, the acid pretreatment of 70 g/L of dry granulated biomass enabled greater digestion of hemicellulose, lower index of cellulose crystallinity, and higher Y RS (45.8 ± 0.7%). The RS increase in fermentation broth to 100 g/L, with posterior detoxification, presented higher productivity ethanol (Q P = 1.44 ± 0.02 g/L/h) with ethanol yield (Y P/RS) of 0.41 ± 0.02 g/g. The value of Q P was to the order of 75% higher than Q P obtained with the same broth without prior detoxification.  相似文献   

9.
The suitability of the determination of the asymmetry factor of chromatographic peaks by the ratio of areas of two components separated by a perpendicular dropped from the maximum of the peak to the base-line, A s * = S b /S a , where symbol a corresponds to the leading edge of the peak and b is for its tailing slope, is discussed. It is demonstrated that this method enables the estimation of the asymmetry of even partially separated chromatographic signals, including those eluted “in the tail” of intense peaks of solvents. The concepts of the asymmetry index I(A s *) and its increment ΔI(A s *) = (A s *)–I(A s *) are introduced, which ensures the characterization of the asymmetry of peaks of polar analytes with respect to the asymmetry of nonpolar reference components, that is, the separation of the effects of the polarity of analytes and their quantities injected into the chromatographic column on this parameter. For the first time we revealed a correlation of the asymmetry factors of compounds of different chemical nature with such a characteristic of their polarity as the difference in chromatographic separation temperature and the normal boiling point of analytes.  相似文献   

10.
The crystal structures of catechol (o-dihydroxybenzene) and its 2:1 complex with dimethylsulfoxide are determined at T = 150 K. Crystal data: C14H18O5S, M = 298.37, triclinic, space group P \(\bar 1\), unit cell parameters: a = 7.7285(13) Å, b = 9.9924(17) Å, c = 10.3188(18) Å, α = 89.963(4)°, β = 89.968(4)°, γ = 69.076(5)°, V = 744.3(2)Å3, Z = 2, D x = 1.331 g/cm3, R1 = 0.048; C6H6O2, M = 110.11, monoclinic, space group P21/n, a = 9.8206(6)Å, b = 5.5903(3)Å, c = 10.4439(6)Å, β = 114.952(2)°; V = 519.85(5) Å3, Z = 4, D x = 1.407 g/cm3, R1 = 0.0289. In the 2:1 complex the molecules are joined in a supramolecular ensemble by D-H...A hydrogen bonds (D = O, C; A = O, π); in catechol they are bonded only by O-H...O. The state diagram of the catechol-dimethylsulfoxide system is examined by DTA.  相似文献   

11.
The syntheses and crystal structures of the layered coordination polymers M(C8H8NO2)2 [M = Mn (1), Co (2), Ni (3) and Zn (4)] are described. These isostructural compounds contain centrosymmetric trans-MN2O4 octahedra as parts of infinite sheets; the ligand bonds to three adjacent metal ions in μ3-N,O,O′ mode from both its carboxylate O atoms and its amine N atom. In each case, weak intra-sheet N–H?O and C–H?O hydrogen bonds may help to consolidate the structure. Crystal data: 1, C16H16MnN2O4, M r = 355.25, monoclinic, P21/c (No. 14), a = 10.6534(2) Å, b = 4.3990(1) Å, c = 15.5733(5) Å, β = 95.1827(10)°, V = 726.85(3) Å3, Z = 2, R(F) = 0.026, wR(F 2) = 0.067. 2, C16H16CoN2O4, M r = 359.24, monoclinic, P21/c (No. 14), a = 10.6131(10) Å, b = 4.3374(4) Å, c = 15.3556(17) Å, β = 95.473(4)°, V = 703.65(12) Å3, Z = 2, R(F) = 0.041, wR(F 2) = 0.091. 3, C16H16N2NiO4, M r = 359.02, monoclinic, P21/c (No. 14), a = 10.6374(4) Å, b = 4.2964(2) Å, c = 15.2827(8) Å, β = 95.9744(14)°, V = 694.66(6) Å3, Z = 2, R(F) = 0.028, wR(F 2) = 0.070. 4, C16H16N2O4Zn, M r = 365.68, monoclinic, P21/c (No. 14), a = 10.6385(5) Å, b = 4.2967(3) Å, c = 15.2844(8) Å, β = 95.941(3)°, V = 694.89(7) Å3, Z = 2, R(F) = 0.038, wR(F 2) = 0.107.  相似文献   

12.
Physicochemical properties of a cis-polypentenamer—a hydrocarbon polymer with a low glass transition temperature (T g = 168.8 K)—have been studied. Measurements of permeability coefficients P in rubbery material for a wide range of gases (He, H2, O2, N2, CO2, CH4, C2H6, C3H8, and n-C4H10) indicate a high permeability of this polymer for which the values of P are only slightly lower than those of the most permeable rubber—poly(dimethylsiloxane). The method of inverse gas chromatography has been employed to estimate solubility coefficients S for n alkanes C3–C10 and cycloalkanes in cis-polypentenamer in the range from 25 to 150°C. It has been shown that the solubility coefficients linearly increase in lnS-T cr 2 coordinates, where T cr is the critical temperature of a solute. In terms of the above correlation, the solubility coefficients of light gases have been estimated and the diffusion coefficients D of gases in the same polymer have been calculated via the formula P=DS. The free volume in cis-polypentenamer has been studied by positron annihilation lifetime spectroscopy. The temperature dependence of the positronium lifetime τ 3 that characterizes the size of the free volume element in a polymer demonstrates saturation at temperatures above 250 K. This effect is probably related to a rapid migration of fluctuation holes in the rubbery polymer at temperatures remote enough from its glass transition temperature.  相似文献   

13.
A comparative analysis of 6,7Li NMR spectra is performed for the samples of monoclinic lithium titanate obtained at different synthesis temperatures. In the 7Li NMR spectra three lines are found, which differ in quadrupole splitting frequencies v Q and according to ab initio EFG calculations are assigned to three crystallographic sites of lithium: Li1 (v Q ~ 27 kHz); Li2 (v Q ~ 59 kHz); Li3 (v Q ~ 6 kHz). The dynamics of lithium ions is studied in a wide temperature range from 300 K to 900 K. It is found that the narrowing of 7Li NMR spectra as a result of thermally activated diffusion of lithium ions in the low-temperature Li2TiO3 sample is observed at a higher temperature in comparison with a sample of high-temperature lithium titanate. Based on the analysis of 6Li NMR spectra it is assumed that there is mixed occupancy of lithium and titanium sites in the corresponding layers of the crystal structure of low-temperature lithium titanate, which hinders lithium ion transfer over regular crystallographic sites.  相似文献   

14.
The reaction of Ag2O and 2-amino-6-methylpyridine (AMP) with nicotinic acid (HNA) and isonicotinic acid (HINA), respectively, afforded two silver(I) complexes, [Ag2(NA)2(AMP)2] n (I) and [Ag2(INA)2(AMP)2] n (II). Both complexes were characterized by elemental analyses and X-ray single-crystal diffraction. Complex I is a pyridine-3-carboxylate bridged polynuclear silver(I) complex, in which the Ag atom is in a tetrahedral geometry, while complex II is a pyridine-4-carboxylate bridged polynuclear silver(I) complex, in which the Ag atom is in a distorted T-shaped geometry. The crystal of I is monoclinic: space group P21/c, a = 8.079(2), b = 17.150(3), c = 8.912(2) Å, β = 98.106(2)°, V = 1222.5(5) Å3, Z = 4. The crystal of II is monoclinic: space group P21/c, a = 7.225(1), b = 12.049(1), c = 15.053(2) Å, β = 102.050(1)°, V = 1281.6(3) Å3, Z = 4.  相似文献   

15.
Complex salts of the composition [Co(NH3)6](ReO4)3·2H2O (I), [Co(en)3](ReO4)3 (II), [Co(NH3)5H2O](ReO4)3·2H2O (III), and [Co(NH3)5Cl](ReO4)2·0.5H2O (IV) are obtained. Their crystal structures are determined by single crystal XRD. Crystallographic characteristics: (I) a = 9.9797(3) Å, b = 12.6994(3) Å, c = 14.7415(4) Å, β = 102.870(1)°, C2/c space group; (II) a = 8.0615(3) Å, b = 8.4483(4) Å c = 8.8267(4) Å, α = 61.923(2)°, β = 89.552(2)°, γ = 72.295(2)°, P1 space group; (III) a = 8.0086(4) Å, b = 12.9839(6) Å, c = 17.5122(7) Å, β=91.858(1)°, P21/n space group; (IV) a = 14.9446(3) Å, b = 14.6562(4) Å, c = 12.2434(4) Å, Cmc21 space group.  相似文献   

16.
A new centrosymmetric mononuclear copper(II) complex [Cu(L)2](ClO4)2 (I) and a new centrosymmetric mononuclear nickel(II) complex [Ni(L)2(MeOH)2](ClO4)2 (II), where L is the zwitterionic ligand 2-bromo-4-chloro-6-[(2-methylammonioethylimino)methyl]phenolate, have been prepared from the Schiff base 2-bromo-4-chloro-6-[(2-methylaminoethylimino)methyl]phenol with copper perchlorate and nickel perchlorate, respectively. The complexes were characterized by elemental analysis, infrared spectra, and single-cyrstal X-ray diffraction (CIF files CCDC nos. 1408054 (I) and 1407973 (II)). Complex I crystallizes in the monoclinic space group P21/c with unit cell dimensions a = 7.7736(4), b = 21.608(1), c = 8.5194(4) Å, β = 93.907(2)°, V = 1427.7(1) Å3, Z = 2, R 1 = 0.0546, and wR 2 = 0.1531. Complex II crystallizes in the monoclinic space group P21/c with unit cell dimensions a = 21.324(3), b = 16.821(2), c = 9.425(1) Å, β = 90.114(2)°, V = 3380.5(7) Å3, Z = 4, R 1 = 0.0693, and wR 2 = 0.1627. The Cu atom in I is in square planar coordination, and the Ni atom in II is in octahedral coordination.  相似文献   

17.
Densities, ρ, and viscosities, η, of pure isobutanol, 1-amino-2-propanol, and 1-propanol, along with their binary mixtures of {x 1isobutanol + x 21-propanol}, {x 11-amino-2-propanol + x 21-propanol}, and {x 11-amino-2-propanol + x 2isobutanol} were measured over the entire composition range and at temperatures (293.15–333.15) K at ambient pressure (81.5 kPa). Excess molar properties such as the excess molar volume, V m E , partial molar volumes, \( \bar{V}_{1} \) and \( \bar{V}_{2} \), excess partial molar volumes, \( \bar{V}_{1}^{\text{E}} \) and \( \bar{V}_{2}^{\text{E}} \), thermal expansion coefficient, α, excess thermal expansion coefficient, α E, viscosity deviation, Δη, and the excess Gibbs energy of activation, ?G E*, for the binary mixtures were calculated from the experimental values of densities and viscosities. The excess values of the binary mixtures are negative in the entire composition range and at all temperatures, and increase with increasing temperature. Viscosity deviations, Δη, are negative over the entire composition range and decrease with increasing temperature. The viscosities of the mixtures were correlated by the models of McAllister, Heric, Hind, Katti, and Nissan. The obtained data were correlated by Redlich–Kister equation and the fitting parameters and standard deviations were determined.  相似文献   

18.
X-ray structural analysis has been performed for two complex compounds: Cu(en)2(o-HB)2H2O (I) (a = 16.873(4) Å, b = 8.713(2) Å, c = 14.803(3) Å, β = 91.15(2)°, V = 2175.8(8) Å3, C2/c, Z = 4, R(F) = 0.0263, 1516 reflections with I > 3σ (I)) and [Cu(en)2(OH2)2]2+(o-AB?)2 (II) (a = 7.488(5) Å, b = 22.122(8) Å, c = 7.856(5) Å, β = 118.77(2)°, V = 1140.7(11) Å3, P21/n, Z = 2, R(F) = 0.0432, 1684 reflections with I > 3σ(I)) synthesized under identical conditions (en is ethylenediamine, o-HB is o-hydroxybenzoate, and o-AB is o-aminobenzoate). Although the compounds were assumed to have similar structures and the Cu-Lig bond lengths and the cis and trans angles are acceptable for an octahedral structure, the geometric parameters of o-HB suggest that the copper atom has a plane square environment.  相似文献   

19.
A new mononuclear cobalt(III) complex, [CoL2(N3)]2 · CH3OH (I), and a new mononuclear zinc(II) complex, [ZnLCl(CH3OH)] (II) (HL = 4-chloro-2-[(2-morpholin-4-ylethylimino)methyl]phenol), were prepared and structurally characterized by elemental analyses, infrared spectroscopy, and single- crystal X-ray diffraction. The crystal of I is monoclinic: space group P21/c, a = 18.742(2) Å, b = 15.197(2) Å, c = 25.646(2) Å, β = 125.996(3)°, V = 5909.8(11) Å3, Z = 4. The crystal of II is monoclinic: space group P21/c, a = 7.257(1) Å, b = 24.707(2) Å, c = 9.637(1) Å, β = 101.557(2)°, V = 1692.9(3) Å3, Z = 4. The Co atom in I is in an octahedral coordination, and the Zn atom in II is in a trigonal-bipyramidal coordination. The urease inhibitory test shows that complex I has strong urease inhibitory activity, while complex II has no activity.  相似文献   

20.
On the basis of analysis of published data on the reaction efficiency of various polymer materials and graphite in their interaction with fast oxygen atoms (energy of about 4.5 eV) as obtained in flight tests of materials in low-Earth orbits of the International Space Station and ground tests, probability P r of chemical oxidation reactions accompanied by ablation has been evaluated. Estimates have been made for 33 polymers consisting of carbon, hydrogen, oxygen, and nitrogen and graphite for two extreme cases when the carboncontaining oxidation products are either CO or CO2 alone. The average probability values found are P r(CO)(av) = 0.184 and P r(CO2)(av) = 0.317. The probability values range from P r(CO) = 0.604 and P r(CO2) = 0.963 for allyl diglycol carbonate to P r(CO) = 0.038 and P r(CO2) = 0.075 for pyrolytic graphite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号