首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The single crystal of [Et4N]4 [MO2Fe4S9(SCH2CH2S)2] was obtainedby reaction of (NH4)2HoS4, FeCl3 , HSCH2CH2SH and Et4 NBr in CH3CN and MeOH-MeONa. Cluster compound [Et4N]4 [Mo2Fe4S9(SCH2CH2S)2] crystal -Lized in the monoclinic space group C2/c with unit cell parameters:a = 17. 672(2)A, b = 33. 851(4)A, c = l3. 900(3)A, β=135.11(4)°, V=5868.8 (3.9)A3 and Z = 4. On the basis of 3514 unique data (I>2σ(I)) the structure was refined to R = 0.0575. The anion [Mo2Fe4S9(SCH2CH2S)2]4-of the cluster compound includes doubly bridging (μ2-S), triply bridging (μ3-S) and quadruply bridging (μ4 -S) . The structrue analysis gives a rule with bond lengths decreasing in the order of Fe-(μ4-S)> Fe-(μ3-s)> Fe-(μ2 -s) and EHMO calculation gives the other rule with bond order increasing in the order of Fe-(μ4-S)< Fe-(μ3-S)相似文献   

2.
The X-ray crystal structures of (NH4)2(15-crown-5)3[Cu(mnt)2] (1) and (NH4)2(benzo-15-crown-5)4- [Cu(mnt)2]·0.5H2O (2) were determined. Two single crystals are composed of distinct structures of ammonium-crown ether supramolecular cation and [Cu(mnt)2]2? anion. The triple-decker dication in complex 1 and a sandwich dimmer in complex 2 were observed. X-Band EPR studies on the single crystals of both complex 1 and complex 2 have been carried out at room temperature, which revealed that complex 2 showed a perfect hyperfine structure of Cu whereas that of complex 1 could not be observed. The principal values and direction cosines of the principal axes of the g and A tensors were computed by a least-squares fitting procedure. The spin density of Cu(II) was estimated according to the principal values of the A tensors and compared well with the results calculated based on DFT method.  相似文献   

3.
The X-ray crystal structures of (NH4)2(15-crown-5)3[Cu(mnt)2] (1) and (NH4)2(benzo-15-crown-5)4- [Cu(mnt)2]·0.5H2O (2) were determined. Two single crystals are composed of distinct structures of ammonium-crown ether supramolecular cation and [Cu(mnt)2]2- anion. The triple-decker dication in complex 1 and a sandwich dimmer in complex 2 were observed. X-Band EPR studies on the single crystals of both complex 1 and complex 2 have been carried out at room temperature, which revealed that complex 2 showed a perfect hyperfine structure of Cu whereas that of complex 1 could not be observed. The principal values and direction cosines of the principal axes of the g and A tensors were computed by a least-squares fitting procedure. The spin density of Cu(Ⅱ) was estimated according to the principal values of the A tensors and compared well with the results calculated based on DFT method.  相似文献   

4.
<正> The crystal and molecular structure of(u-C2H5S)[μ-CO-C(CH3)-CH2]Fe2(CO)6, Mr = 409.958 has been determined by X-ray diffraction method. Crystals of this complex are monoclinic, belonging to space group P21/c, and the cell parameters are a = 9.191(1), b = 9.666(1), c = 18.47(2)A,β=98.71(1)° V= 1621.9A3,Z=4,Dc=1.68g/cm3.Thg final R and Rw equal 0.058 and 0.089 for 1948 observed unique reflections. The acyl and ethyl-thio groups are bridged to two iron atoms to form an envelope type of structure. The bond lengths of Fe(1)-0(1), Fe(2)-C(1), Fe(l)-S, Fe(2)-S, Fe(l)-Fe(2) involved in the envelope structure are 1.992, 1.980, 2.260, 2.242 and 2.552A, respectively.  相似文献   

5.
<正> The title complex crystallizes in monoclinic system,space group C 2/m with α=19. 870(5),b=13. 070(2),c=18. 246(4)A ,β=134. 32(1)°,Mr = 707. 88, V=3390. 0A3.Z = 4,DC=1. 387g/cm3,F(000) = 1468,final R=0. 066 for 2244 independent reflections with Ⅰ >3σ(Ⅰ). The cation was shown to contain three Fe (Ⅲ) atoms at the apices of an equilateral triangle with a 3-O bridge.The Fe (1)-(μ3-O)and Fe(2)-(μ3-O) distances are 1. 907(6) and 1. 87(1) A , respectively. And mixed ligands of acetato and propionyloxy lato are bridged to each pair of the Fe(Ⅲ) atoms.  相似文献   

6.
<正> [Me4N]6[Ag6(i-mnt)6].H2O(1),[Et4N]4[Cu8(i-mnt)6](2) and [Me4N]4-[Cu5Ag3(i-mnt)6].H2O(3)(i-mnt=S2C=C(CN)2) were synthesized. The crystal and molecular structure of the complex 1 was reported by us.The structure of the complex 2 was determined from single crystal X-ray diffraction data. [Et4N]4[Cu8(i-mnt)s] 2, Mr=1870.46, monoclinic, P21/n, a=14.724(6), b = 17.228(3), c=15.59(1)A,β= 100.75(7)°,V=3886.3A3;Z = 2,Dc= 1.598 g/cm3. Complex 3 has been characterized by ICP elemental analyses and IR spectrum.  相似文献   

7.
By mixing appropriate quantity of FeCl_2, (NH_4)_2MoS_4 ano HSCH_2CH_2OH in MeOH--MeONa, the crystal [(C_2H_5)_4N]_4[Fe_6S_9(SCH_2CH_2OH)Cl] was obtained. The cluster compound crystallizes in triclinic, space gtoup, P1, and crystal cell constants:a = 12.818(4)A, b = 13.632(3)A, c = 18.328(7)A, α = 106.09(2)°, β = 100.75(2)°, γ = 102.69(2)°, Z = 2. On the basis of 7517 unique data (I>3σ(I)) the structure has been refined toR = 0.0818 by the block-diagonal least-squares. The result of structure analysis shows thatthe cluster compound [Fe_6S_9(SCH_2CH_2OH)CI]~(4-) includes doubly bridging μ_2-S, triply bridgingμ_3-S and quadruply bridging μ_4-S. The [Fe_6S_9]~(2-) core of [Fe_6S_9(SCH_2CH_2OH)CI]~(4-) consistsof eight nonplanar Fe_2S_3 rhombs that are fused edge-sharing to give four Fe(μ_2-S)(μ_3-S)Fe,two Fe(μ_2--S)(μ_4-S)Fe and two Fe(μ_3-S) (μ_4-S)Fe subunits. The quantum chemical calcu-lation of EHMO method was carried out for this cluster compound. The structure analysisgives a rule wit  相似文献   

8.
<正> M=1140.85, monoclinic, P21/c. a=12.748(2), b=14.320(2), c=23.118 (3)A,β=101.07(1)°, V=4141(2)A3, Z=4, Dc=1.830 g.cm-3. Final R=0.039 for 4160 reflections.The title compound is a rather irregular trinuclear molybdenum cluster having only two M-M bonds with two shorter Mo-Mo distances of 2.808(1), 2.839(1), and one longer Mo-Mo distance of 3.337(1)8. The existence of two Mo-Mo bonds is coincident with the electron counting for {Mo3} cluster core, and may be regarded as a result of the oxidation of a compound Mo3(μ3-S)(μ-S)2 (μ-L)[S2P(OEt)2]4(L') (L'=neutral ligands)1 characterized by us previously.  相似文献   

9.
1 INTRODUCTION The complexes of syn- or anti-[(5-C5Me5)2- W2(S)2(-S)2] could be prepared in several ways[1~5]. For example, a mixture consisting of [Et3NH][(5-C5Me5)WS3] and anti-[(5-C5Me5)2- W2(S)2(-S)2] was generated from the reactions of [(5-C5Me5)WCl4] with H2S in the presence of NEt3[2]. The reactions of [(5-C5Me5)W(NO)I2] with H2S led a mixture of [(5-C5Me5)W(S)(S2)I] and anti-[(5-C5Me5)2W2(S)2(-S)2][3]. [(5-C5Me5)W- (StBu)3] was degraded in THF at room temperat…  相似文献   

10.
刘旭锋  肖勋文  刘幸海 《结构化学》2011,30(10):1437-1441
Reaction of [(μ-SCH2)2NPh]Fe2(CO)6 with Ph2PCH2PPh2 in the presence of Me3NO·2H2O gave the title complex [(μ-SCH2)2NPh]Fe2(CO)5(Ph2PCH2PPh2)(1)in 78% yield.The new complex 1 was characterized by elemental analysis,spectroscopy and X-ray crys-tallography.It crystallizes in triclinic,space group P1 with a = 10.832(2),b = 12.003(2),c = 15.579(3),V = 1785.6(6)3,Z = 2,C32H26Fe2NO5PS2,Mr = 819.40,Dc = 1.524 g/cm3,μ(MoKα)= 1.064 mm-1,F(000)= 840,T = 113(2)K,the final R = 0.0543 and wR = 0.1218 for 6203 observed reflections(I > 2σ(I)).The Ph2PCH2PPh2 ligand resides in an axial position of the square-pyramidal coordination sphere of the Fe atom and trans to the benzene ring in order to reduce the steric repulsion between Ph2PCH2PPh2 and the benzene ring.  相似文献   

11.
Treating [Cp*V(μ‐Cl)2]3 (Cp* = C5Me5) and [(2,6‐i‐Pr2C6H3N)2MoMe2], respectively, with Me3SnF afforded the title compounds [Cp*V(μ‐F)2]4 ( 1 ) and [(2,6‐i‐Pr2C6H3N)2MoF2] · THF ( 2 ). 1 has a tetrameric structure, in which four V atoms can be regarded as being arranged at the vertices of a distorted tetrahedron, with four long edges bridged by one F atom and each of the other two short edges bridged by two F atoms with a mean V–F bond length of 2.00 Å. A hydrolyzed product of 2 , [(2,6‐i‐Pr2C6H3N)6Mo43‐F)2Me2(μ‐O)4] ( 3 ) was characterized by elemental analyses and X‐ray single crystal study. The X‐ray diffraction analysis reveals that 3 has a unique tetranuclear structure, containing two five and two six coordinated Mo atoms connecting each other by four μ‐O and two μ3‐F atoms. The geometries around the two Mo atoms can be described having distorted trigonal bipyramidal and distorted octahedral coordination spheres, respectively. The Mo–(μ‐O) bond lengths are 1.813 Å (average) for five coordinated Mo atoms and 2.030 Å (average) for those of six coordinated, respectively, indicating an additional π bonding between five coordinated Mo atoms and the μ‐O atoms. The Mo–(μ3‐F) distances range from 2.291 to 2.352 Å.  相似文献   

12.
Reaction of the carbamoyl complex [C(NMe2)3][(CO)4FeC(O)NMe2] ( 1 ) with silver salts gives the dinuclear μ‐carbamoyl complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(HNMe2)] ( 2 ). Depending on the solvent, crystals of 2a with an asymmetrical or of 2b with a symmetrical internal NH···O bridge are formed. The dimethylamino group is originated from a further molecule of 1 from which an amino group is transferred to the “α‐CO” ligand of an intermediate oxidation product while the H+ ion probably comes from deprotonation of a guanidinium cation. The HNMe2 ligand cannot be replaced by CO but easily by PPh3 to give [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(PPh3)] ( 3 ). All complexes were studied by X‐ray diffraction analyses and the usual spectroscopic methods.  相似文献   

13.
Syntheses and Crystal Structures of [μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] and [{(Me3Si)2CHSb}3Fe(CO)4] – Two Cyclic Complexes with Antimony Ligands cyclo‐(Me3SiCH2Sb)5 reacts with [(THF)W(CO)5] (THF = tetrahydrofuran) to form cyclo‐[μ‐(Me3SiCH2Sb)5–Sb1,Sb3–{W(CO)5}2] ( 1 ). The heterocycle cyclo‐ [{(Me3Si)2CHSb}3Fe(CO)4] ( 2 ) is formed by an insertion reaction of cyclo‐[(Me3Si)2CHSb]3 and [Fe2(CO)9]. The crystal structures of 1 and 2 are reported.  相似文献   

14.
A novel mixed‐tribridged dimolybdenum(I) compound [Bn4N][Mo2(μ‐SPh)2(μ‐Cl)(CO)6] (1) has been synthesized from the reaction of Mo2(CO)3(SPh)2 with BU4NCl. Compound 1 was characterized by IR, UV‐Vis and 1H, 13C, 95Mo NMR spectroscopic analyses. The electrochemical behavior was measured by cyclic voltammetry, indicating a quasi‐reversible two‐electron transfer in one step. The crystal structure determined by X‐ray crystallography shows that 1 contains a [Mo2(μ‐S)2(μ‐Cl)]? core with a planar Mo2S2unit and a Cl bridge. The Mo? Mo distance is 0.28709(7) nm, and the Mo‐Cl‐Mo angle is 66.44(4)°. A newface‐sharing bioctahedral structure is discussed.  相似文献   

15.
Reaction of the binuclear μ‐carbamoyl complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(HNMe2)] ( 1 ) in toluene with the chelating ligands Ph2PCH2PPh2 (dppm) and Ph2PCH2CH2PPh2 (dppe) gives different results. With dppm only the complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(dppm)] ( 3 ) with a dangling ligand is obtained under replacement of amine, whereas with dppe depending on the reaction conditions up to three compounds are found. A 1 : 1 mixture of the educts generates the related complex [(CO)3Fe(μ‐Me2NCO)2Fe(CO)2(dppe)] ( 4 ) together with the tetranuclear complex [{(CO)3Fe(μ‐Me2NCO)2Fe(CO)2}2(dppe)] (5 ). 4 slowly converts into [(CO)3Fe(μ‐Me2NCO)2Fe(CO)(dppe)] ( 6 ) with dppe acting as a chelating ligand. 6 is the first compound in this series in which one of the five CO groups is replaced by another donor. A 2 : 1 molar ratio of 1 and dppe quantitatively produces 5 . Addition of CO to a solution of 6 proceeds under slow reversible conversion of the complex into 4 . The compounds were characterized by the usual spectroscopic methods; 3 , 5 and 6 were also studied by X‐ray diffraction analyses.  相似文献   

16.
Copper(I) halides with triphenyl phosphine and imidaozlidine‐2‐thiones (L ‐NMe, L ‐NEt, and L ‐NPh) in acetonitrile/methanol (or dichloromethane) yielded copper(I) mixed‐ligand complexes: mononuclear, namely, [CuCl(κ1‐S‐L ‐NMe)(PPh3)2] ( 1 ), [CuBr(κ1‐S‐L ‐NMe)(PPh3)2] ( 2 ), [CuBr(κ1‐S‐L ‐NEt)(PPh3)2] ( 5 ), [CuI(κ1‐S‐L ‐NEt)(PPh3)2] ( 6 ), [CuCl(κ1‐S‐L ‐NPh)(PPh3)2] ( 7 ), and [CuBr(κ1‐S‐L ‐NPh)(PPh3)2] ( 8 ), and dinuclear, [Cu21‐I)2(μ‐S‐L ‐NMe)2(PPh3)2] ( 3 ) and [Cu2(μ‐Cl)21‐S‐L ‐NEt)2(PPh3)2] ( 4 ). All complexes were characterized with analytical data, IR and NMR spectroscopy, and X‐ray crystallography. Complexes 2 – 4 , 7 , and 8 each formed crystals in the triclinic system with P$\bar{1}$ space group, whereas complexes 1 , 5 , and 6 crystallized in the monoclinic crystal system with space groups P21/c, C2/c, and P21/n, respectively. Complex 2 has shown two independent molecules, [(CuBr(κ1‐S‐L ‐NMe)(PPh3)2] and [CuBr(PPh3)2] in the unit cell. For X = Cl, the thio‐ligand bonded to metal as terminal in complex 4 , whereas for X = I it is sulfur‐bridged in complex 3 .  相似文献   

17.
Reactions of Cp*NbCl4 and Cp*TaCl4 with Trimethylsilyl‐azide, Me3Si‐N3. Molecular Structures of the Bis(azido)‐Oxo‐Bridged Complexes [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) and [Cp*TaCl2(μ‐N3)]2(μ‐O) (Cp* = Pentamethylcyclopentadienyl) The chloro ligands in Cp*TaCl4 (1c) can be stepwise substituted for azido ligands by reactions with trimethylsilyl azide, Me3Si‐N3 (A) , to generate the complete series of the bis(azido)‐bridged dimers [Cp*TaCl3‐n(N3)n(μ‐N3)]2 ( n = 0 (2c) , n = 1 (3c) , n = 2 (4c) and n = 3 (5c) ). If the solvent CH2Cl2 contains traces of water, an additional oxo bridge is incorporated to give [Cp*‐TaCl2(μ‐N3)]2(μ‐O) (6c) or [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) (7c) , respectively. Both 6c and 7c are also formed in stoichiometric reactions from [Cp*TaCl2(μ‐OH)]2(μ‐O) (8c) and A . Analogous reactions of Cp*NbCl4 (1b) with A were used to prepare the azide‐rich dinuclear products [Cp*NbCl3‐n(N3)n(μ‐N3)]2 (n = 2 (4b) , and n = 3 (5b) ), and [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) (7b) . The mononuclear complex Cp*Ta(N3)Me3 (10c) is obtained from Cp*Ta(Cl)Me3 and A . All azido complexes were characterised by their IR as well as their 1H and 13C NMR spectra; X‐ray crystal structure analyses are available for 6c and 7b .  相似文献   

18.
Activation of Carbon Disulfide on Triruthenium Clusters: Synthesis and X‐Ray Crystal Structure Analysis of [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐Ph2PCH2PPh2){μ‐η2‐PCy2C(S)}(μ3‐S)] and [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] [Ru3(CO)6(μ‐H)2(μ‐PCy2)2(μ‐dppm)] ( 1 ) (dppm = Ph2PCH2PPh2) reacts under mild conditions with CS2 and yields by oxidative decarbonylation and insertion of CS into one phosphido bridge the opened 50 VE‐cluster [Ru3(CO)5(μ‐H)2(μ‐PCy2)(μ‐dppm){μ‐η2‐PCy2C(S)}(μ3‐S)] ( 2 ) with only two M–M bonds. The compound 2 crystallizes in the triclinic space group P 1 with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; α = 84.65(3), β = 77.21(3), γ = 81.87(3)° and V = 2790.7(11) Å3. The reaction of [Ru3(CO)7(μ‐H)(μ‐PtBu2)(μ‐PCy2)2] ( 3 ) with CS2 in refluxing toluene affords the 50 VE‐cluster [Ru3(CO)5(CS)(μ‐H)(μ‐PtBu2)(μ‐PCy2)23‐S)] ( 4 ). The compound cristallizes in the monoclinic space group P 21/a with a = 19.093(3), b = 12.2883(12), c = 20.098(3) Å; β = 104.223(16)° and V = 4570.9(10) Å3. Although in the solid state structure one elongated Ru–Ru bond has been found the complex 4 can be considered by means of the 31P‐NMR data as an electron‐rich metal cluster.  相似文献   

19.
[Fc2B2(Br)(μ‐NPEt3)2]+Br – a Ferrocenyl‐substituted Phosphoraneiminato Complex of Boron [Fc2B2(Br)(μ‐NPEt3)2]+Br has been prepared from ferrocenylboron dibromide, [Fe(η5‐C5H5)(η5‐C5H4BBr2)], and the silylated phosphoraneimine Me3SiNPEt3 in dichloromethane solution to give orange‐red single crystals which were characterized by IR, NMR and 57Fe Mössbauer spectra, as well as by a crystal structure determination. [Fc2B2(Br)(μ‐NPEt3)2]+Br · 3 CH2Cl2 ( 1 · 3 CH2Cl2): Space group P21/n, Z = 4, lattice dimensions at –50 °C: a = 1370.6(3), b = 2320.9(5), c = 1454.4(2), β = 95.38(1)°, R1 = 0.061. In the cation of 1 the ferrocenyl‐substituted boron atoms are connected by the nitrogen atoms of the [NPEt3] groups to form a planar B2N2 four‐membered ring. One of the boron atoms having planar, the other tetrahedral coordination.  相似文献   

20.
Reactions of meso‐bis[(diphenylphosphinomethyl)phenylphosphino]methane (dpmppm) with CuI species in the presence of NaBH4 afforded di‐ and tetranuclear copper hydride complexes, [Cu2(μ‐H)(μ‐dpmppm)2]X ( 1 ) and [Cu4(μ‐H)24‐H)(μ‐dpmppm)2]X ( 2 ) (X=BF4, PF6). Complex 1 undergoes facile insertion of CO2 (1 atm) at room temperature, leading to a formate‐bridged dicopper complex [Cu2(μ‐HCOO)(dpmppm)2]X ( 3 ). The experimental and DFT theoretical studies clearly demonstrate that CO2 insertion into the Cu2(μ‐H) unit occurred with the flexible dicopper platform. Complex 2 also undergoes CO2 insertion to give a formate‐bridged complex, [Cu4(μ‐HCOO)3(dpmppm)2]X, during which the square Cu4 framework opened up to a linear tetranuclear chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号