共查询到20条相似文献,搜索用时 15 毫秒
1.
We discuss and illustrate the fact that the second law of thermodynamics, when formulated as a dynamical principle, implies a departure from locality. This discussion involves an extension of our theory to singular distribution functions. Certain analogies between our considerations and the conclusion of Gödel's theorem are briefly mentioned. 相似文献
2.
Henry P. Stapp 《Foundations of Physics》1988,18(4):427-448
It is argued that the validity of the predictions of quantum theory in certain spincorrelation experiments entails a violation of Einstein's locality idea that no causal influence can act outside the forward light cone. First, two preliminary arguments suggesting such a violation are reviewed. They both depend, in intermediate stages, on the idea that the results of certain unperformed experiments are physically determinate. The second argument is entangled also with the problem of the meaning of physical reality. A new argument having neither of these characteristics is constructed. It is based strictly on the orthodox ideas of Bohr and Heisenberg, and has no realistic elements, or other ingredients, that are alien to orthodox quantum thinking.This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098. 相似文献
3.
Measurement-induced nonlocality 总被引:1,自引:0,他引:1
We interpret the maximum global effect caused by locally invariant measurements as measurement-induced nonlocality, which is in some sense dual to the geometric measure of quantum discord [Dakic, Vedral, and Brukner, Phys. Rev. Lett. 105, 190502 (2010)]. We quantify measurement-induced nonlocality from a geometric perspective in terms of measurements, and obtain analytical formulas for any dimensional pure states and 2 × n dimensional mixed states. We further derive a tight upper bound to measurement-induced nonlocality in general case. The physical significance of measurement-induced nonlocality is discussed in the context of correlations, entanglement, quantumness, and cryptographic communication. 相似文献
4.
Aurelien Drezet 《Pramana》2007,68(3):389-396
In a paper by Home and Agarwal [1], it is claimed that quantum nonlocality can be revealed in a simple interferometry experiment
using only single particles. A critical analysis of the concept of hidden variable used by the authors of [1] shows that the
reasoning is not correct.
相似文献
5.
We investigate nonlocality distillation using measures of nonlocality based on the Elitzur-Popescu-Rohrlich decomposition. For a certain number of copies of a given nonlocal box, we define two quantities of interest: (i) the nonlocal cost and (ii) the distillable nonlocality. We find that there exist boxes whose distillable nonlocality is strictly smaller than their nonlocal cost. Thus nonlocality displays a form of irreversibility which we term "bound nonlocality." Finally, we show that nonlocal distillability can be activated. 相似文献
6.
We use techniques for lower bounds on communication to derive necessary conditions (in terms of detector efficiency or amount of superluminal communication) for being able to reproduce the quantum correlations occurring in Einstein-Podolsky-Rosen-type experiments with classical local hidden-variable theories. As an application, we consider n parties sharing a Greenberger-Horne-Zeilinger-type state and show that the amount of superluminal classical communication required to reproduce the correlations is at least n(log((2)n-3) bits and the maximum detector efficiency eta(*) for which the resulting correlations can still be reproduced by a local hidden-variable theory is upper bounded by eta(*)=8/n and thus decreases with n. 相似文献
7.
Based on the skew information, we present a quantity, uncertainty-induced quantum nonlocality (UIN) to measure the quantum correlation. It can be considered as the updated version of the original measurement-induced nonlocality (MIN) preserving the good computability but eliminating the non-contractivity problem. For 2×d-dimensional state, it is shown that UIN can be given by a closed form. In addition, we also investigate the maximal uncertainty-induced nonlocality. 相似文献
8.
9.
The outcomes obtained in Bell tests involving two-outcome measurements on two subsystems can, in principle, generate up to 2?bits of randomness. However, the maximal violation of the Clauser-Horne-Shimony-Holt inequality guarantees the generation of only 1.23?bits of randomness. We prove here that quantum correlations with arbitrarily little nonlocality and states with arbitrarily little entanglement can be used to certify that close to the maximum of 2?bits of randomness are produced. Our results show that nonlocality, entanglement, and randomness are inequivalent quantities. They also imply that device-independent quantum key distribution with an optimal key generation rate is possible by using almost-local correlations and that device-independent randomness generation with an optimal rate is possible with almost-local correlations and with almost-unentangled states. 相似文献
10.
11.
Walborn SP Salles A Gomes RM Toscano F Souto Ribeiro PH 《Physical review letters》2011,106(13):130402
Steering is a form of quantum nonlocality that is intimately related to the famous Einstein-Podolsky-Rosen (EPR) paradox that ignited the ongoing discussion of quantum correlations. Within the hierarchy of nonlocal correlations appearing in nature, EPR steering occupies an intermediate position between Bell nonlocality and entanglement. In continuous variable systems, EPR steering correlations have been observed by violation of Reid's EPR inequality, which is based on inferred variances of complementary observables. Here we propose and experimentally test a new criterion based on entropy functions, and show that it is more powerful than the variance inequality for identifying EPR steering. Using the entropic criterion our experimental results show EPR steering, while the variance criterion does not. Our results open up the possibility of observing this type of nonlocality in a wider variety of quantum states. 相似文献
12.
13.
Analysis of a microscopic Landau-Ginzburg-Wilson model of 3D short-ranged wetting shows that correlation functions are characterized by two length scales, not one, as previously thought. This has a simple diagrammatic explanation using a nonlocal interfacial Hamiltonian and yields a thermodynamically consistent theory of wetting in keeping with exact sum rules. For critical wetting the second length serves to lower the cutoff in the spectrum of interfacial fluctuations determining the repulsion from the wall. We show how this corrects previous renormalization group predictions for fluctuation effects, based on local interfacial Hamiltonians. In particular, lowering the cutoff leads to a substantial reduction in the effective value of the wetting parameter and prevents the transition being driven first order. Quantitative comparison with Ising model simulation studies due to Binder, Landau, and co-workers is also made. 相似文献
14.
Bell nonlocality and Einstein-Podolsky-Rosen(EPR) steering are very important quantum correlations in composite quantum systems. Bell nonlocality of a bipartite state is observed in some local quantum measurements, while EPR steering was first observed by Schr o¨dinger in the context of famous EPR paradox. In this paper, we discuss the Bell nonlocality and EPR steering of bipartite states, including mathematical definitions and characterizations of these two quantum correlations, the convexity as well as the closedness of the sets of all Bell local states and all EPR unsteerable states, respectively. We also derive sufficient conditions for a state to be steerable; these conditions imply that Alice can steer Bob's state whenever Alice has two POV measurements such that the sets of Bob's normalized conditional states become two disjoint sets of pure states, or whenever she has one POV measurement such that Bob's normalized conditional states become a linearly independent set of pure states. 相似文献
15.
16.
Tsang M 《Physical review letters》2011,107(27):270402
In astronomy, interferometry of light collected by separate telescopes is often performed by physically bringing the optical paths together in the form of Young's double-slit experiment. Optical loss severely limits the efficiency of this so-called direct detection method, motivating the fundamental question of whether one can achieve a comparable performance using separate optical measurements at the two telescopes before combining the measurement results. Using quantum mechanics and estimation theory, here I show that any such spatially local measurement scheme, such as heterodyne detection, is fundamentally inferior to coherently nonlocal measurements, such as direct detection, for estimating the mutual coherence of bipartite thermal light when the average photon flux is low. This surprising result reveals an overlooked signature of quantum nonlocality in a classic optics experiment. 相似文献
17.
Bandyopadhyay S 《Physical review letters》2011,106(21):210402
Quantum information is nonlocal in the sense that local measurements on a composite quantum system, prepared in one of many mutually orthogonal states, may not reveal in which state the system was prepared. It is shown that in the many copy limit this kind of nonlocality is fundamentally different for pure and mixed quantum states. In particular, orthogonal mixed states may not be distinguishable by local operations and classical communication, no matter how many copies are supplied, whereas any set of N orthogonal pure states can be perfectly discriminated with m copies, where m相似文献
18.
The perception of reality by biosystems is based on different, and in certain respects more effective, principles than those utilized by the more formal procedures of science. As a result, what appears as random pattern to the scientific method can be meaningful pattern to a living organism. The existence of this complementary perception of reality makes possible in principle effective use by organisms of the direct interconnections between spatially separated objects shown to exist in the work of J. S. Bell.In memory of J. S. Bell.address for 1990–91 as in footnote 2. 相似文献
19.
《Physics letters. A》2005,335(4):266-273
We study the phase time for various quantum mechanical networks having potential barriers in their arms to find the generic presence of Hartman effect. In such systems it is possible to control the ‘super arrival’ time in one of the arms by changing parameters on another, spatially separated from it. This is yet another quantum nonlocal effect. Negative time delays (time advancement) and ‘ultra Hartman effect’ with negative saturation times have been observed in some parameter regimes. 相似文献
20.
Quantum nonlocality as an axiom 总被引:1,自引:0,他引:1
In the conventional approach to quantum mechanics, indeterminism is an axiom and nonlocality is a theorem. We consider inverting the logical order, making nonlocality an axiom and indeterminism a theorem. Nonlocal superquantum correlations, preserving relativistic causality, can violate the CHSH inequality more strongly than any quantum correlations. 相似文献