首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the point mass and the singular isothermal sphere gravitational lens models in the framework of relativistic theories of gravitation which admit the standard parametrized post-Newtonian (PPN) formalism. In the case of the singular isothermal sphere, we determine the PPN parameter in terms of the image angular separation, the ratio of two distances and the velocity dispersion in the deflector which can be evaluated from observations.  相似文献   

2.
For planetary motions the post-NEWTON ian approximations of classical, special-relativistic, and general-covariant theories are compared. It is shown that, in this approximation, the anisotropy terms, which occur in the effective interaction potential in classical and special-relativistic theories, suggest a retardation of gravitation. In the post-NEWTON ian approximation of general-covariant theories the fixation of a retardation velocity is equivalent to coordinate conditions. – All post-NEWTON ian corrections are dipole-like ones, while, according to GAUSS , the classical perturbation theory generally leads to quadrupole-like corrections of the perturbation potential.  相似文献   

3.
U. Bleyer 《Annalen der Physik》1982,494(6):397-407
Theories of gravitation are called gauge invariant if the invariance of the gravitational field lagrangian with respect to gauge transformations of the gravitational field variables is independend of the invariance of this lagrangian with respect to the Einstein group of general coordinate transformations. They are bimetric theories because the coordinate covariance is ensured by constructing scalar densities relative to a globally flat background metric. Such a theory is represented by the PAUL-FIERZ equations for massless spin 2 particles. But this theory is inconsistent if nongravitational matter is enclosed as a source. All attempts to overcome this inconsistancy preserving gauge invariance lead to Einstein's GRT. We review this problem and compare the situation with a theory proposed by LOGUNOV showing that he overcomes the inconsistency of linear Einstein's equations by replacing the field variables by a gauge invariant combination of new ones, which turns out to be the first order form of v. FREUD'S superpotential.  相似文献   

4.
In relativistic theories, the assumption of proper mass constancy generally holds. We study gravitational relativistic mechanics of point particle in the novel approach of proper mass varying under Minkowski force action. The motivation and objective of this work are twofold: first, to show how the gravitational force can be included in the Special Relativity Mechanics framework, and, second, to investigate possible consequences of the revision of conventional proper mass concept (in particular, to clarify a proper mass role in the divergence problem). It is shown that photon motion in the gravitational field can be treated in terms of massless refracting medium, what makes the gravity phenomenon compatible with SR Mechanics framework in the variable proper mass approach. Specifically, the problem of point particle in the spherical symmetric stationary gravitational field is studied in SR-based Mechanics, and equations of motion in the Lorentz covariant form are obtained in the relativistic Lagrangean problem formulation. The dependence of proper mass on potential field strength is derived from the Euler-Lagrange equations as well. One of new results is the elimination of conventional 1/r divergence, which is known to be not removable in Schwarzschild gravitomechanics. Predictions of particle and photon gravitational properties are in agreement with GR classical tests under weak-field conditions; however, deviations rise with potential field strength. The conclusion is made that the approach of field-dependent proper mass is perspective for development of SR gravitational mechanics and further studies of gravitational problems.  相似文献   

5.
This paper considers the dynamics of a classical problem in astrophysics, the behavior of spherically symmetric gravitational collapse starting from a uniform, density cloud of interstellar gas. Previous work on this problem proposed a universal self-similar solution for the collapse yielding a collapsed mass much smaller than the mass contained in the initial cloud. This paper demonstrates the existence of a second threshold—not far above the marginal collapse threshold—above which the asymptotic collapse is not universal. In this regime, small changes in the initial data or weak stochastic forcing leads to qualitatively different collapse dynamics. In the absence of instabilities, a progressing wave solution yields a collapsed uniform core with infinite density. Under some conditions the instabilities ultimately lead to the well-known self-similar dynamics. However, other instabilities can cause the density profile to become non-monotone and produce a shock in the velocity. In presenting these results, we outline pitfalls of numerical schemes that can arise when computing collapse.  相似文献   

6.
There are well-known problems associated with the idea of (local) gravitational energy in general relativity. We offer a new perspective on those problems by comparison with Newtonian gravitation, and particularly geometrized Newtonian gravitation (i.e., Newton–Cartan theory). We show that there is a natural candidate for the energy density of a Newtonian gravitational field. But we observe that this quantity is gauge dependent, and that it cannot be defined in the geometrized (gauge-free) theory without introducing further structure. We then address a potential response by showing that there is an analogue to the Weyl tensor in geometrized Newtonian gravitation.  相似文献   

7.
This paper presents a systematic study of the theories of gravitation that have been proposed. We restrict ourselves to an investigation of the linear approximation since new connections with experiment can be expected in this order in χ only. It turns out that all theories that differ from general relativity contain a scalar field and describe gravitation by a mixture of scalar and tensor interactions. The scalar has negative energy in theories with light deflection larger than the Einstein value. As a consequence instabilities of cosmic systems and continuous creation result in this case. Furthermore, the emission of gravitational radiation with negative energy could be the energy source of the quasars. The question of the mass renormalization of the scalar is investigated. No unique answer is possible at present. Finally a new class of gravitational theories is given.  相似文献   

8.
A class of theories of gravitation that naturally incorporates preferred frames of reference is presented. The underlying space-time geometry consists of a partial parallelization of space-time and has properties of Riemann—Cartan as well as teleparallel geometry. Within this geometry, the kinematic quantities of preferred frames are associated with torsion fields. Using a variational method, it is shown in which way action functionals for this geometry can be constructed. For a special action the field equations are derived and the coupling to spinor fields is discussed.  相似文献   

9.
A non-geometric relativistic theory of gravitation is developed by defining a semi-metric to replace the metric tensor as gravitational vector potential. The theory show that the energy-momentum tensor of the gravitational field belong to the gravitational source, gravitational radiation is contained in Einstein’s field equations that including the contribution of gravitational field, the real physical singularity in the gravitational field can be eliminated, and the dark matter in the universe is interpreted as the matter of pure gravitational field.  相似文献   

10.
The gravitational collapse of a massless scalar field enclosed with a perfectly reflecting wall in a spacetime with a cosmological constant Λ is investigated. The mass scaling for the gapped collapse MξAH-Mg ∝(∈c-∈)is confirmed and a new time scaling for the gapped collapse TAH-Tg ∝(∈c-∈)ζis found. For both the critical exponents,we find strong evidence to show that they are non-universal. Especially when Λ∈= 0, we find that both of these two critical exponents depend on the combination ΛR~2, where R is the radial position of the reflecting wall. We find an evolution of the critical exponent ξ from 0.37 in the confined asymptotic d S case with ΛR~2= 1.75 to 0.68 in the confined asymptotic Ad S case with ΛR~2=-1.75, while the critical exponent ζ varies from 0.10 to 0.26, which shows that the new critical behavior for the gapped collapse is essentially different from the Choptuik's case.  相似文献   

11.
We consider some properties of TREDER'S tetrad theories, derived in I, using the field equations proposed by KASPER and LIEBSCHER . The linearized theory is considered, because the field energy becomes positive, if the energy of the weak field is a positive one. Using the dynamical equations, the field equations lead for the symmetric part of the field to the gauge invariant field equations in Hilbert gauge and to corresponding equations for the antisymmetric part. This means that in this approximation the dynamical equations replace the gauge invariance and the tetrad field corresponds to a mixture of tensor and scalar gravitons. We discuss possible experiments for showing the existence of scalar gravitons and limiting the free parameter of the theory.  相似文献   

12.
The ergodic properties of many-body systems with repulsive-core interactions are the basis of classical statistical mechanics and are well established. This is not the case for systems of purely-attractive or gravitational particles. Here we consider two examples, (i) a family of one-dimensional systems with attractive power-law interactions, , and (ii) a system of N gravitating particles confined to a finite compact domain. For (i) we deduce from the numerically-computed Lyapunov spectra that chaos, measured by the maximum Lyapunov exponent or by the Kolmogorov–Sinai entropy, increases linearly for positive and negative deviations of ν from the case of a non-chaotic harmonic chain (ν = 2). For there is numerical evidence for two additional hitherto unknown phase-space constraints. For the theoretical interpretation of model (ii) we assume ergodicity and show that for a small-enough system the reduction of the allowed phase space due to any other conserved quantity, in addition to the total energy, renders the system asymptotically stable. Without this additional dynamical constraint the particle collapse would continue forever. These predictions are supported by computer simulations. PACS numbers: 05.45.Pq, Numerical simulation of chaotic systems, 05.20.−y, Classical statistical mechanics, 36.40.Qv, Stability and fragmentation of clusters, 95.10.Fh, Chaotic dynamics.  相似文献   

13.
An important issue in the dynamics of neutron star binaries is whether tidal interaction can cause the individual stars to collapse into black holes during inspiral. To understand this issue better, we study the dynamics of a cluster of collisionless particles orbiting a non-rotating black hole, which is part of a widely separated circular binary. The companion body's electric- and magnetic-type tidal fields distort the black hole and perturb the cluster, eventually causing the cluster to collapse into the hole as the companion spirals in under the influence of gravitational radiation reaction. We find that magnetic-type tidal forces do not significantly influence the evolution of the cluster as a whole. However, individual orbits can be strongly affected by these forces. For example, some orbits are destabilized due to the addition of magnetic-type tidal forces. We find that the most stable orbits are close to the companion's orbital plane and retrograde with respect to the companion's orbit.  相似文献   

14.
15.
U. Kasper 《Annalen der Physik》1976,488(2):113-124
After an introduction to the formalism used throughout the paper there follows a concise presentation of the theory of fermion fields in one-tetrad gravitational theories. That presentation gives a hint to the construction of a bi-tetrad theory, the two tetrad fields being denoted by hAk and h?Ak. The tetrad field hAk. gives the Riemannian metric gkl while the tetrad field h?hAk is orthonormalized with respect to the flat metric akl. Specializing h?Ak in such a way that they have the form δAk in the preferred coordinates of Minkowski space and using a matter Lagrangian which contains these h?Ak only by the anholonomic components of the metric Christoffel symbols, we obtain a dynamical energy momentum tensor which is equal to the canonical one. Then we consider the relations of the bi-tetrad theory to other theories which are only covariant with respect to global Lorentz transformations from the beginning. As an example we formulate the main relations of the two-component neutrino theory.  相似文献   

16.
An unified theory of gravitation and matter is tentatively described by adding phenomenological crossing terms to Einstein's equations. The impact on the singularity problem is discussed.  相似文献   

17.
Gravitational collapse is an isoentropic process for an isolated perfect fluid and the entropy decreases for an open collapsing system. We also give a distinguishing parameter for the entropy change for an imperfect fluid. By use of the distinguishing parameter, we calculate the entropy changes of self-gravitational collapsing systems and conclude that the total entropy of a collapsing system decreases or is unchanged before the system's horizon appears.  相似文献   

18.
In this paper, we investigated the cylindrical gravitational collapse with heat flux by considering the appropriate geometry of the interior and exterior spacetimes. For this purpose, we matched collapsing fluid to an exterior containing gravitational waves.The effects of heat flux on gravitational collapse are investigated and matched with the results obtained by Herrera and Santos (Class. Quantum Gravity 22:2407, 2005).  相似文献   

19.
Spherically symmetric inhomogeneous dust collapse has been studied in higher dimensional space-time and the appearance of a naked singularity has been analyzed both for the non-marginal and the marginally bound cases. It has been shown that a naked singularity is possible for any arbitrary dimension in the non-marginally bound case. For the marginally bound case we have examined the radial null geodesics from the singularity and found that a naked singularity is possible up to five dimensions.  相似文献   

20.
In this paper we study the gravitational collapse applying methods of loop quantum gravity to a minisuperspace model. We consider the space-time region inside the Schwarzschild black hole event horizon and we divide this region in two parts, the first one where the matter (dust matter) is localized and the other (outside) where the metric is Kantowski–Sachs type. We study the Hamiltonian constraint obtaining a set of three difference equations that give a regular and natural evolution beyond the classical singularity point in “r=0” localized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号