首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《结构化学》2019,38(12)
Owing to the abundant reserves and low cost, potassium ion batteries(PIBs), as potential alternatives to lithium ion batteries(LIBs) in the field of grid-level electrical energy storage systems, have triggered extensive research interest recently. Taking into consideration of the cost, environmental benignity and sustainability, carbon-based materials are supposed to be a promising choice for PIB anodes. In this perspective, we summarize the carbon-based materials with various microstructures toward PIBs and try to offer comprehensive understanding the underlying mechanism of potassium(K) ion storage. In addition, several strategies including heteroatom doping, morphology engineering, defect engineering, interlayer engineering, and composition engineering are proposed to rationally design the nanostructures of the advanced carbon-based PIB anodes. Finally, we conclude the current challenges and provide our perspectives on the development of high-performance carbon materials for PIB anodes.  相似文献   

2.
直接甲醇燃料电池(DMFC)因其燃料能量密度高,工作温度低,低污染排放等优点被认为是用作移动设备电源的最佳选择之一,至今已有美国的Oorja Protonics公司和丹麦的IRD公司等新能源相关企业相继发布了多款用于手机、电脑、通信基站、叉式装卸机或房车的商业产品.然而, DMFC内部的复杂情况造成的多种不同的电压损失仍旧使得其实际电压效率远低于理论值.其中从阳极渗透到阴极的甲醇造成的混合电位导致的电压损失尤为明显.目前,众多研究人员都致力于开发高稳定性、高耐久性、高性能且低成本的催化材料体系,以克服传统Pt催化剂存在的各种问题.除了催化剂本身之外, DMFC的问题还与其中膜电极的微结构和电化学特性息息相关.膜电极是化学能通过电催化氧化还原反应转化为电能的反应场所,通常由阳极扩散层、阳极催化层、质子交换膜、阴极催化层和阴极扩散层依序组合而成.通过对MEA中的各层进行优化,如传质管理和甲醇渗透等问题都能得到有效解决.
  近年来,纳米技术常被用于改进DMFC性能的研究.具备纳米结构的金属-碳/金属氧化物载体类催化材料得到了广泛研究.这些电催化材料在制备方法、结构和组分上都有较大区别.结构方面,许多研究都证明制备纳米级多孔网络结构或者有序阵列结构的催化层有助于提高催化性能和Pt的利用率.组分方面,许多研究人员都开展了引入Pt以外金属成分或金属氧化物来改变Pt催化剂的表面电子状态的研究.引入这些组分导致的配位体效应可以通过弱化Pt与H+, OH-或COads等的相互作用来起到抗催化毒化和提高催化效率的作用.尽管对于DMFC领域的认知逐渐完善,但是仍有许多问题有待解决.因此,本文介绍了目前用于DMFC的纳米结构电催化材料和多孔电极的研究进展.重点介绍了纳米结构催化剂和载体材料的合成及表征.
  通过对比不同催化材料的特性可以发现,在本文涉及到的催化材料中, In0.1SnO2-Pt和(MoO3)0.2SnO2-Pt/C表现出了最高的催化活性,但是它们高效催化甲醇电氧化所需的碱性环境与现在占绝对主流地位的Nafion质子交换膜所必须的酸性环境相冲突,所以其实际应用价值在碱性阴离子交换膜研究取得突破前都难以有效发挥.而另一类表现较好的采用溶致液晶模板法合成的纳米树枝状和纳米星形Pt催化剂则存在制备工艺难以商业规模化的问题.总的来说,采用溶剂热合成法制备的Pt-NRCeO2/GNs和Pt/Ti0.9Sn0.1O2-C等纳米结构金属氧化物、碳材料复合载体和Pt基贵金属催化剂组成的催化材料体系不仅催化性能相对于商业化Pt纳米颗粒有很大提高,而且制备方法易于商业规模化,值得进一步关注.此外,本文还介绍了如内部传质过程的理论建模计算和膜电极中功能结构的制备等优化DMFC中多孔电极内传质过程的方法.通过计算机模拟得到优化DMFC内部传质过程所需的扩散层、催化层的传质特性相关参数,再通过改进MEA制备工艺,有效控制各层的结构参数向模拟的优化值靠拢,能够实现DMFC性能的有效提升.综合模拟、实验研究及工艺研究结果,根据实际需要,设计和制备包含新功能层的MEA的相关研究也更进一步提高了DMFC的性能和实用性.就目前的研究情况而言,如果在性能提升的基础上,使用寿命再取得突破, DMFC一定会有很好的商业应用前景.  相似文献   

3.
As an energy‐storage system, rechargeable potassium‐ion batteries (PIBs) have aroused widespread attention in recent years due to their earth abundance, low standard redox potential, and high ionic conductivity. The development of high‐performance electrode materials is key to optimize the battery performance and useful to improve the feasibility of PIB technology. In this sense, a minireview on alloying‐type anode materials for advanced PIBs is provided, covering the potassium storage properties, reaction mechanisms, theoretical analysis, electrochemical performance, and suitable binders and electrolytes.  相似文献   

4.
近年来,全钒液流电池作为一种大规模储能装置,其电极材料得到了广泛的研究,并且获得了一定的进展.本文简述了全钒液流电池对电极材料的要求,综述了其电极材料的研究进展,重点介绍了碳电极及其改性方面的工作,并对其电极材料的发展趋势进行了展望.  相似文献   

5.
We report the synthesis of high‐molecular‐weight linear polyisobutylenes (PIBs) and PIB networks from low‐molecular‐weight PIB by thiol‐ene click chemistry. Thus, liquid allyl‐telechelic PIB was reacted with small di‐ and tri‐thiols, and the thiolated intermediates chain‐extended by UV‐ or thermally induced free radical initiation to linear and crosslinked products. PIB networks were also prepared by crosslinking SH‐telechelic PIB with a small triallyl compound. Linear products were characterized by 1H NMR spectroscopy and GPC, and networks by FTIR spectroscopy, extractables, swelling, and permanent set. The effect of reaction conditions (nature of thiol chain extender, concentration of photo‐ and thermal initiators, UV radiation time, and reagent concentrations) on chain extension and crosslinking was investigated. Under well‐defined conditions high‐molecular‐weight PIBs and tight PIB networks were prepared. Thiol‐ene click chemistry provides novel thiolated PIB derivatives and is a useful strategy for the convenient preparation of high‐molecular‐weight rubbery PIBs and tight PIB networks from low‐molecular‐weight PIB precursors. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   

6.
Lithium shortage and the growing demand for electricity storage has encouraged researchers to look for new alternative energy-storage materials. Due to abundant potassium resources, similar redox potential to lithium metal, and low cost, potassium-ion batteries (PIBs), as one of the promising alternatives, have been applied in energy-storage research recently. However, PIBs do not have adequate competition in their electrochemical efficiency because the molar volume of potassium ions is higher than those in lithium and sodium ions. Therefore, for better application and development of PIBs, finding suitable anode and cathode materials is currently the most important task. The latest developments in electrode materials for PIBs have been outlined in depth in this review. It focuses on the structural design and synthetic methods for novel electrode materials, ingenious optimization and tuning strategies, and explains the intrinsic reaction mechanism. The effects of organic electrolytes and aqueous electrolytes on battery systems are compared and clarified. Finally, theoretical and viable insights are given to the challenges posed by the creation and practical application of PIBs in the future.  相似文献   

7.
超级电容器是一类利用电化学双电层或电极材料在电极/溶液界面发生的氧化还原反应来存储能量的装置,除兼有常规电容器功率密度大和二次电池能量密度高的特点外,还具有可逆性好和循环寿命长等优点.本文重点介绍了近几年国内外对中孔炭材料、表面官能团修饰中孔炭材料、中孔炭-金属氧化物、中孔炭-导电聚合物等几类电极材料的研究现状;并且展望了超级电容器用中孔炭及其复合电极材料的当前研究热点和发展前景.  相似文献   

8.
In an internal hybrid capacitor, at least one electrode displays battery-like charge/discharge and the other electrode stores charge reversibly at the electric double-layer (EDL). Recently, a plethora of hybrid cells in aqueous electrolytes have been proposed by coupling an EDL electrode with a battery electrode, the latter made from a variety of redox-active/redox-mediator species either dissolved in the electrolyte or adsorbed/immobilized in nanoporous electrodes. This review presents current opinions, discusses challenges, and supplies recommendation about the hybrid cells with aqueous electrolytes and carbon electrodes.  相似文献   

9.
Polyaniline (PANI) has piqued the interest of nanotechnology researchers due to its potential as an electrode material for supercapacitors. Despite its ease of synthesis and ability to be doped with a wide range of materials, PANI′s poor mechanical properties have limited its use in practical applications. To address this issue, researchers investigated using PANI composites with materials with highly specific surface areas, active sites, porous architectures, and high conductivity. The resulting composite materials have improved energy storage performance, making them promising electrode materials for supercapacitors. Here, we provide an overview of recent developments in PANI-based supercapacitors, focusing on using electrochemically active carbon and redox-active materials as composites. We discuss challenges and opportunities of synthesizing PANI-based composites for supercapacitor applications. Furthermore, we provide theoretical insights into the electrical properties of PANI composites and their potential as active electrode materials. The need for this review stems from the growing interest in PANI-based composites to improve supercapacitor performance. By examining recent progress in this field, we provide a comprehensive overview of the current state-of-the-art and potential of PANI-based composites for supercapacitor applications. This review adds value by highlighting challenges and opportunities associated with synthesizing and utilizing PANI-based composites, thereby guiding future research directions.  相似文献   

10.
《中国化学快报》2023,34(3):107372
Potassium ion batteries (PIBs) have been regarded as promising alternatives to lithium ion batteries (LIBs) on account of their abundant resource and low cost in large scale energy storage applications. However, it still remains great challenges to explore suitable electrode materials that can reversibly accommodate large size of potassium ions. Here, we construct oxygen-deficient V2O3 nanoparticles encapsulated in amorphous carbon shell (Od-V2O3@C) as anode materials for PIBs by subtly combining the strategies of morphology and deficiency engineering. The MOF derived nanostructure along with uniform carbon coating layer can not only enables fast K+ migration and charge transfer kinetics, but also accommodate volume change and maintain structural stability. Besides, the introduction of oxygen deficiency intrinsically tunes the electronic structure of materials according to DFT calculation, and thus lead to improved electrochemical performance. When utilized as anode for PIBs, Od-V2O3@C electrode exhibits superior rate capability (reversible capacities of 262.8, 227.8, 201.5, 179.8, 156.9 mAh/g at 100, 200, 500, 1000 and 2000 mA/g, respectively), and ultralong cycle life (127.4 mAh/g after 1000 cycles at 2 A/g). This study demonstrates a feasible way to realize high performance PIBs through morphology and deficiency engineering.  相似文献   

11.
Organics present significant prospects as environmentally friendly and sustainable electrode materials for potassium ion batteries(PIBs) because of their abundant, recyclable and highly customizable characteristics. However, small molecular organics are easily solubilized in organic electrolytes, resulting in a low capacity and poor stability. Herein, the folic acid-based supermolecules(SM-FAs) are successfully prepared by a hydrothermal assisted self-assembly strategy. Due to multi-locus hydrog...  相似文献   

12.
This series of papers concern new materials for possible biological applications created by combining the chemistry of highly reactive cyanoacrylates (CAs) with polyisobutylene (PIB) rubbers. First, a new strategy for the synthesis of CA–telechelic PIBs is described. Subsequently, the strategy is employed for the synthesis of low viscosity (syringible) CA–telechelic three‐arm star PIB [Ø(PIB–CA)3]. The intermediates of the synthesis route are characterized by 1H NMR spectroscopy. Injecting liquid Ø(PIB–CA)3 into living tissue (fresh chicken egg) produces a bolus of crosslinked PIB rubber. The spectacular oxidative resistance of this rubber is documented by its resistance to concentrated HNO3. A structural model of the crosslinked rubber obtained upon contacting Ø(PIB–CA)3 with proteinaceous tissue is proposed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Rechargeable potassium-ion batteries (PIBs), with their low cost and the abundant K reserves, have been promising candidates for energy storage and conversion. Among all anode materials for PIBs, metal sulfides (MSs) show superiority owing to their high theoretical capacity and variety of material species. Nevertheless, the battery performance of MSs is hindered by many factors such as poor conductivity, low ion diffusivity, sluggish interfacial/surface transfer kinetics, and drastic volume changes. In this review, the electrochemical reaction mechanisms, challenges, and synthesis methods of MSs for PIBs are summarized and discussed. In particular, the most common synthesis methods of MSs for PIBs are highlighted, including template synthesis, hydro/solvothermal synthesis, solid-phase chemical synthesis, electrospinning synthesis, and ion-exchange synthesis. During the potassium storage process, the two-dimensional layered MSs follow the intercalation/extraction mechanism, and the MSs with inactive metal undergo the conversion reaction, whereas the metal-active MSs follow the conversion-alloying reaction mechanism. Given the inherent properties of MSs and the reactions they undergo during cycling, when used as anodes for PIBs, such materials experience a series of problems, including poor ion-/electron-transport kinetics, structural instability, and loss of active material caused by the dissolution of discharged polysulfide products and the occurrence of side reactions. These problems can be solved by optimizing the methods for synthesizing MSs with an ideal composition and structure. The template method can precisely prepare porous or hollow-structured materials, the hydro/solvothermal method can alter the thickness or size of the material by adjusting certain synthesis parameters, and the one-dimensional-structured material obtained via electrospinning often has a large specific surface area, all of which can shorten the transport pathway for potassium ions, thereby improving the performance of the battery. The ion-exchange method affords difficult-to-synthesize MSs via anion- or cation-exchange, in which the product inherits the structure of the starting material. The solid-phase synthesis method makes it possible to combine MSs with other materials. Combinations with materials such as carbon or other MSs helps to provide sufficient buffer space for the volume expansion of MSs during cycling, while promoting electron transport and improving the potassium-storage properties of the anodes. Therefore, this review aims to highlight the current defects of MS anodes and explore the construction of their ideal architecture for high-performance PIBs by optimizing the synthesis methods. Ultimately, we propose the possible future advancement of MSs for PIBs.   相似文献   

14.
钾离子电池由于其低成本和丰富的钾矿产资源,在能量存储和转化领域极具应用潜力。金属硫化物理论容量高且材料种类丰富,在众多钾离子电池负极材料中表现突出。然而,金属硫化物存在的缺点,如导电性差、离子扩散率低、界面/表面传输动力学缓慢等,限制了其在储钾过程中的性能表现。在这篇综述中,我们系统的讨论和总结了金属硫化物作为钾离子电池负极的电化学反应机制、所面临的挑战和合成方法。其中,重点讨论了其常见的合成方法,包括模板法、溶剂热/水热法、固相反应法、静电纺丝法和离子交换法。这篇综述意在通过优化合成策略设计合成理想的组分和结构,来解决钾电负极材料存在的问题,最终得到高性能的钾离子电池负极材料。最后我们还对基于金属硫化物的钾离子电池负极的发展方向进行了展望。  相似文献   

15.
何水剑  陈卫 《电化学》2015,21(6):518
自支撑电极材料在超级电容器中有着广泛的应用. 碳材料具有结构多样、来源丰富、价格低廉以及性能稳定等优点,是构建三维自支撑电极材料的首选基底材料. 本文结合作者课题组的研究工作,从“由上而下”和“由下而上”两个方面,概述了设计、制备三维自支撑电极材料的常用方法及材料的电容性能,希望对开发利用天然可再生资源,制备高性能的自支撑电极材料及其在超级电容器材料中的应用有所帮助.  相似文献   

16.
王成显  于飞  马杰 《物理化学学报》2016,32(10):2411-2426
微生物燃料电池(MFC)是利用生物催化剂将污水有机物中的化学能直接转化为电能的技术,因其功率密度和能量转化效率低,电极制作成本高,限制了其大规模实际应用。因此如何提高电极的催化性能并降低电极制作成本成为MFC的研究重点方向。由于石墨烯基杂化材料具有良好的导电性和催化特性,因此石墨烯基杂化材料成为在MFC电极应用中的热点之一。本文综述了近年来MFC石墨烯基杂化电极材料的最新研究进展,重点讨论了改性石墨烯电极、金属及非金属/石墨烯杂化电极、金属氧化物/石墨烯杂化电极、聚合物/石墨烯杂化电极和石墨烯凝胶电极的设计思路和制备方法及其催化性能,着重分析了石墨烯基阳极和阴极杂化材料对MFC产电性能的影响。最后对石墨烯基杂化材料在MFC应用中存在的问题及研究前景进行了总结和展望。  相似文献   

17.
醌类化合物电极材料具有理论比容量高、结构可设计、成本低廉和绿色可持续等优点,被认为是可充锂电池理想的电极材料。本文介绍了醌类化合物电极材料的分类及其结构特点、电化学工作原理及其电化学性能,对醌类化合物的发展、面临的问题等方面进行了概括,探讨了提高该类电极材料电化学性能的方法,并对醌类化合物电极材料的发展方向进行了展望。  相似文献   

18.
This review provides an overview of recent progress towards the development of flexible supercapacitors based on macroscopic carbon nanotubes-based electrodes, including one-dimensional (1D) fibers, 2D films, and 3D foams, with a focus on electrode preparation and configuration design as well as their integration with other multifunctional devices.  相似文献   

19.
The increasing demand for high-performance rechargeable energy storage systems has stimulated the exploration of advanced electrode materials. MXenes are a class of two-dimensional (2D) inorganic transition metal carbides/nitrides, which are promising candidates in electrodes. The layered structure facilitates ion insertion/extraction, which offers promising electrochemical characteristics for electrochemical energy storage. However, the low capacity accompanied by sluggish electrochemical kinetics of electrodes as well as interlayer restacking and collapse significantly impede their practical applications. Recently, interlayer space engineering of MXenes by different chemical strategies have been widely investigated in designing functional materials for various applications. In this review, an overview of the most recent progress of 2D MXenes engineering by intercalation, surface modification as well as heterostructures design is provided. Moreover, some critical challenges in future research on MXene-based electrodes have been also proposed.  相似文献   

20.
Aqueous batteries using inorganic compounds as electrode materials are considered a promising solution for grid-scale energy storage, while wide application is limited by the short life and/or high cost of electrodes. Organics with carbonyl groups are being investigated as the alternative to inorganic electrode materials because they offer the advantages of tunable structures, renewability, and they are environmentally benign. Furthermore, the wide internal space of such organic materials enables flexible storage of various charged ions (for example, H+, Li+, Na+, K+, Zn2+, Mg2+, and Ca2+, and so on). We offer a comprehensive overview of the progress of organics containing carbonyls for energy storage and conversion in aqueous electrolytes, including applications in aqueous batteries as solid-state electrodes, in flow batteries as soluble redox species, and in water electrolysis as redox buffer electrodes. The advantages of organic electrodes are summarized, with a discussion of the challenges remaining for their practical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号