首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three new emitters,namely 10,10'-(quinoline-2,8-diyl)bis(10 H-phenoxazine)(Fene),10,10'-(quinoline-2,8-diyl)bis(10 H-phenothiazine)(Fens) and 10,10'-(quinoline-2,8-diyl)bis(9,9-dimethyl-9,10-dihydroacridine)(Yad),featuring quinoline as a new electron acceptor have been designed and conveniently synthesized.These emitters possessed small singlet-triplet splitting energy(ΔEst) and twisted structures,which not only endowed them show thermally activated delayed fluorescence(TADF)properties but also afforded a remarkable aggregation-induced emission(AIE) feature.Moreover,they also showed aggregation-induced delayed fluorescence(AIDF) property and good photoluminescence(PL) property,which are the ideal emitters for non-doped organic light-emitting diodes(OLEDs).Furthermore,high-performance non-doped OLEDs based on Fene,Fens and Yad were achieved,and excelle nt maximum external quantum efficiencies(EQE_(max)) of 14,9%,13.1% and 17,4%,respectively,were obtained.It was also found that all devices exhibited relatively low turn-on voltages ranging from 3.0 V to3.2 V probably due to their twisted conformation and the AIDF properties.These results demonstrated the quinoline-based emitters could have a promising application in non-doped OLEDs.  相似文献   

2.
Two n-butoxy-encapsulated dendritic thermally activated delayed fluorescent(TADF) emitters(namely O-D1 and O-D2) with the first-/second-generation carbazoledendrons are designed and synthesized via C—N coupling between carbazoledendrons and 2,4,6-tris(4-bromophenyl)-1,3,5-triazine core.It is found that,compa red with the commo nly-used tert-butyl groups,the use of n-butoxy encapsulation groups can lead to smallersinglet-triplet energy gap for the dendrimers,producing stronger TADF effect together with faster reverse intersystem crossing process.Solution-processed TADF organic light-emitting diodes(OLEDs) utilizingalkoxy-encapsulated dendrimers O-D1 and O-D2 as emitters exhibitstate-of-the-art device efficiency withthe maximum external quantum efficiency up to 16.8% and 20.6%,respectively,which are ~1.6 and~2.0 times that of the tert-butyl-encapsulated counterparts.These results suggest that alkoxy encapsulation of the carbazole-based TADF dendrimers can be a promising approach for developing highly efficient emitters for solution-processed OLEDs.  相似文献   

3.
Three kinds of triazine based organic molecules designed for thermally activated delayed fluorescence (TADF) emitters are investigated by first-principles calculations. An optimal Hartree-Fork (HF) method is adopted for the calculation of energy gap between the first singlet state (S1) and the first triplet state (T1). The natural transition orbital, the electronhole (e-h) distribution and the e-h overlap diagram indicate that the S1 states for the three systems include both charge-transfer and some localized excitation component. Further quantitative analysis of the excitation property is performed by introducing the index Δr and the integral of e-h overlap S. It is found that symmetric geometry is a necessary condition for TADF emitters, which can provide more delocalized transition orbitals and consequently a small S1-T1 energy gap. Artful inserting aromatic groups between donors and acceptors can significantly enhance the oscillator strength. Finally, the energy state structures calculated with the optimal HF method is presented, which can provide basis for the study of the dynamics of excited states.  相似文献   

4.
During the past decade, the discovery of thermally activated delayed fluorescence (TADF) materials has significantly boosted the development of organic light-emitting diode (OLED) technology. Compared with small-molecule and polymeric TADF materials, TADF dendrimers have emerged as promising emitters for solution-processed OLEDs because they have the integrated advantages of TADF small molecules and polymers in achieving high efficiency, excellent solution processability, and precise molecular structures. In recent years, TADF dendrimers have experienced important advances in molecular design, mechanism exploration and device performance. Herein, we present a comprehensive review of solution-processable TADF dendrimers, mainly focusing on their molecular design principles and structure–property correlations. The advanced device performances of these dendrimers are also summarized. Finally, we proposed the prospects and challenges on the development of TADF dendrimers.  相似文献   

5.
In this work, a new series of hyperbranched polymers of PFTPE-Ir(piq)3-X(X?=?1, 5, 10) were designed and synthesized, in which tris(1-phenylisoquinoline)iridium(Ш) (Ir(piq)3) acts as red emission core and PFTPE acts as branches. The photophysical study reveals that these hyperbranched polymers exhibit aggregation-induced emission (AIE) characteristic, inducing in much higher photoluminescent quantum yield (ΦY) in neat film than that in dilute tetrahydrofuran (THF) solution. The white-light OLEDs using PFTPE-Ir(piq)3-X as emission layer show rather weaker efficiency roll-off. Especially, the white-light OLED based on PFTPE-Ir(piq)3-5 as emission layer shows a maximum luminance of 4686?cd/m2, a maximum luminous efficiency of 2.43?cd/A, a maximum external quantum efficiency of 1.08% and the Commission Internationale de l’Eclairage coordinate of (0.26, 0.36).  相似文献   

6.
本文以2-[对-N,N-二苯基氨基-苯基]-S-二氧硫杂蒽酮(TXO-TPA)为发光材料, 4,4',4"-三(9-咔唑基)三苯胺(TCTA) 为主体材料, 通过溶液法与真空蒸镀相结合的工艺,制备了高效延迟荧光型电致发光器件。为了考察不同电子传输材料对器件性能的影响,分别选取TmPyPB、TPBI、BCP、Alq3作为电子传输层制备器件,并对器件的性能进行系统的研究。结果表明:由于1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯(TPBI)具有合适的HOMO/LUMO能级、高的电子迁移率以及高的三重态能级,利于电子的传输和激子的阻挡,以其为电子传输层的器件显示出最佳的性能,器件的开启电压低至3.6 V,电流效率达到16.2 cd/A,最大的EQE达到5.97%。  相似文献   

7.
白光有机发光二极管(white organic light-emitting diodes,WOLEDs)在全色显示、固态照明以及背光源等领域有巨大的应用前景,其研究备受关注.其中,荧光/磷光混合型WOLEDs因兼具荧光材料的长寿命和磷光材料的高效率,被认为是目前最有希望实现照明应用的器件结构.荧光/磷光混合型WOLEDs最重要的问题是要解决荧光材料的单线态激子和磷光材料的三线态激子的协同发光.为了避免单线态激子和三线态激子的相互猝灭问题,必须设计有效的器件结构.本文以两种不同三线态能级的蓝光荧光材料为研究对象,介绍了不同高性能荧光/磷光混合型WOLEDs的结构设计与性能.研究表明,载流子传输平衡的高效结构设计和激子分布宽范围内的有效调控是实现高性能荧光/磷光混合型WOLEDs的关键.  相似文献   

8.
9.
Issue concerning accurate prediction of the reverse intersystem crossing rate (kRISC) is critical for developing novel efficient thermally activated delayed fluorescence (TADF) materials. In this contribution, the kRISC rates from the lowest excited triplet T1 state to the lowest excited singlet S1 state were evaluated for five donor-π-acceptor-type pyrimidine-based TADF emitters using the semiclassical Marcus theory. Both the singlet-triplet energy difference (ΔEST) and spin–orbit coupling (V) between the S1 and T1 states were investigated by performing the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. In addition, their fluorescence emission wavelengths (λem) were also calculated at the TD-DFT level. The predicted kRISC and λem values are found to reproduce well the available experimental findings. The present results reveal that the kRISC rates of molecules possessing the unsymmetrical diphenyl pyrimidine acceptor core are calculated to be slightly larger than those of their analogues with the symmetrical diphenyl pyrimidine. In addition, introducing two tert-butyl groups into the 2,7-positions of the donor moiety of the latter is also an effective method for increasing kRISC when designing TADF emitters. Such a difference is related to the nature of the T1 excited state. A more remarkable charge-transfer (CT) contribution to the state can achieve a smaller ΔEST, leading to a more efficient RISC process, and consequently a shorter delayed fluorescence lifetime as observed experimentally. © 2019 Wiley Periodicals, Inc.  相似文献   

10.
聚集诱导发光分子的光电功能与器件应用   总被引:1,自引:0,他引:1  
光电功能分子通常以薄膜和聚集体的形式显示功能, 聚集诱导发光(AIE)分子体系的发现为解决固态下聚集诱导荧光猝灭(ACQ)难题提供了新的思路. 本文总结了近年来本课题组发展的一系列AIE 分子, 侧重介绍这些AIE 分子的光电功能与器件应用, 特别是在有机电致发光器件和有机激光方面的应用. AIE 材料显示非常高的电致发光效率, 在显示与白光器件方面潜力巨大. 在发展电泵有机激光方面, AIE 材料特点突出, 是最有前景的一类材料.  相似文献   

11.
In the text, two luminescent materials ECPPTT and ECDPTT, have been designed and synthesized by integrating tetraphenyl/triphenyl-ethene(TPE/TrPE), carbazole group and thianthrene-9,9,10,10-tetraoxide unit. ECPPTT and ECDPTT possess obvious AIE and TADF capabilities, and show good thermal stability in their thin film of 240 °C and 262 °C, respectively. Non-doped organic light emitting diodes(OLED) using ECPPTT and ECDPTT as emission layer are prepared and exhibit blue-green and green emission color with peaks at 494, 517 nm, respectively. The non-doped OLED based on ECPPTT provides good peak EL efficiencies of 3.437 cdA-1 and 10090cdm-2; while non-doped OLED fabricated with ECDPTT affords a maximum current efficiency and a maximum luminance of 2.478 cdA-1 and 7561cdm-2. These results have demonstrated the feasibility of combing AIE and TADF units to design new molecules.  相似文献   

12.
A symmetrical host material, 2,7-di(9,9-dimethyl-9H-fluoren-1-yl)-9H-thioxanthen-9-one (DMBFTX), with TADF property was firstly developed. The red phosphorescent OLED based on this TADF host displays a lower EQEs rolloff of 38.8% at a luminance of 10 000 cd/m2 as compared to 71.2% of commercial mCP host, which is resulted from the upconversion of DMBFTX from triplet to singlet.  相似文献   

13.
Polymorphism has been frequently used in tuning the singlet emissions of pure organic dyes. The modulation of triplet-involved emissions, particularly room temperature phosphorescence(RTP),however, is scarcely reported. Herein, polymorphism is reported to tune the triplet-involved emissions of 2 CZBZL, a newly designed pure organic luminogen consisting of twisted benzil and two planar carbazole moieties. Other than the conventional modulation through changing molecular conformation and packing, vibration can also finely tune the triplet-involved emissions. Besides prompt fluorescence(PF),polymorph B with relatively extended conformation emits thermally activated delayed fluorescence(TADF), whereas the others(A, C–E) with similarly more twisted conformations generate predominant RTP or simultaneous DF and RTP. These results demonstrate the fascinating chance to regulate the tripletinvolved emissions through controlling conformation and vibration.  相似文献   

14.
A series of donor-acceptor-donor (D-A-D) type blue thermally activated delayed fluorescence (TADF) emitters, namely, 2,7-DtBuCz-AD, 3,6-DtBuCz-AD, 3,6-DMAC-AD, and 3,6-DMAC-AD-CF3, were developed with highly rigid acridin-9(10H)-one (i.e. acridone [AD]) as acceptor. The regioisomeric effect study revealed that the attachment of donors at 3,6-sites of AD ring dramatically enhanced TADF ratio in comparison with the 2,7-site isomer. On the one hand, by varying donors from dimethylacridine (DMAC) to tert-butylcarbazole (tBuCz) at 3,6-sites of AD ring, the emission color purity of blue TADF emitters was improved from sky blue to deep blue. On the other hand, by introducing trifluoromethyl (CF3) onto 9-site phenyl ring of 3,6-DtBuCz-AD, the efficiency stability of the sky blue emission for 3,6-DMAC-AD-CF3 was remarkably improved. The deep blue organic light-emitting diode (OLED) of 3,6-DtBuCz-AD exhibited a maximum external quantum efficiency (EQEmax) of 17.88% with CIE coordinates of (0.15, 0.08), which is among the best performances ever reported for deep blue TADF-OLEDs. The sky-blue OLED of 3,6-DMAC-AD realized an EQEmax of 23.16%. And with the incorporation of CF3, the sky blue device of 3,6-DMAC-AD-CF3 exhibited extremely low efficiency loss of only 5.1% at the high brightness of 1,000 cd/m2.  相似文献   

15.
聚合物热激活延迟荧光(TADF)材料应用于有机发光二极管(OLEDs)中以来,取得了飞速发展,迄今为止已经报道了多种不同分子结构及性能优异的聚合物TADF发光材料.它们具有不含重金属的化学结构、100%的理论内量子效率和易于通过溶液加工进行大面积制造的优势.本文从分子结构和发光颜色2个角度总结了不同结构TADF聚合物的研究进展,重点介绍了我们课题组在长链型TADF聚合物设计与OLEDs器件性能方面的研究工作,探究TADF聚合物颜色调控与效率提升的途径,论述了TADF聚合物存在的问题与未来发展.  相似文献   

16.
A cyclometalated iridium(III) complex containing 2-(9,9-diethylfluoren-2-yl)pyridine [Ir(Flpy)3] was prepared and used in the fabrication of both yellow and white organic light-emitting diodes (OLEDs). A hole-blocking material has been used as a hole barrier layer in-between different emission layers, helping the formation of the hole limitation region. With the proper position of a hole barrier layer and the construction of a four-emission-layer structure involving the use of [Ir(Flpy)3], the resulting WOLED shows sound device performance as well as very stable color even at high luminances. Such WOLEDs have been demonstrated to reveal superior white light color stability/efficiency trade-off optimization. The Commission Internationale de L’Eclairage (CIE) coordinate differences Δx and Δy are confined to ±0.015 when the luminance increases from 13 to 14806 cd/m2. The color rendering index (CRI) of the device is also very good, which varies only from 86 to 87 by changing from the normal direction to 80° off-normal at 12 V. The peak electrophosphorescence efficiency can reach as high as 24.6 cd/A at 168 cd/m2and it can still be kept at 17.2 cd/A at 10834 cd/m2. Such outstanding performance renders this all-phosphor WOLED very attractive as a white light source for illumination applications, which typically demand high efficiency, high CRI, and stable color in high brightness work conditions.  相似文献   

17.
以四甲基咔唑为电子给体(D)、 二苯砜为电子受体(A)构建了具有D-A-D结构的纯有机咔唑/二苯砜衍生物——9,9'-[磺酰基双(3,1-亚苯基)]双(1,3,6,8-四甲基-9H-咔唑)(TMe-mSOCz). 对所合成材料的光物理性能研究表明, TMe-mSOCz表现出明显的聚集诱导发射(AIE)和热激活延迟荧光(TADF), 延迟寿命和延迟荧光占比分别为2.26 μs和47.7%, 并具有良好的电化学稳定性和热稳定性. 基于TMe-mSOCz作为非掺杂发光层制备了有机发光二极管(OLED)器件, 其启亮电压(Von)为3.5 V, 最大外量子效率为5.63%, 国际照明委员会(CIE)坐标为(0.18, 0.26). 在1000 cd/m2亮度下, 非掺杂器件的效率滚降非常小(7.1%), 色彩稳定性较好, 其具有窄的半峰宽(FWHM=72 nm). 研究结果表明, 在传统TADF分子给受体间引入甲基修饰有利于开发具有AIE特性与更高效的D-A-D型TADF分子, 这为基于AIE-TADF分子开发新型OLED器件提供了新途径.  相似文献   

18.
Multi-resonance thermally activated delayed fluorescence (MR-TADF) materials hold great promise for advanced high-resolution organic light-emitting diode (OLED) displays. However, persistent challenges, such as severe aggregation-caused quenching (ACQ) and slow spin-flip, hinder their optimal performance. We propose a synergetic steric-hindrance and excited-state modulation strategy for MR-TADF emitters, which is demonstrated by two blue MR-TADF emitters, IDAD-BNCz and TIDAD-BNCz , bearing sterically demanding 8,8-diphenyl-8H-indolo[3,2,1-de]acridine (IDAD) and 3,6-di-tert-butyl-8,8-diphenyl-8H-indolo[3,2,1-de]acridine (TIDAD), respectively. These rigid and bulky IDAD/TIDAD moieties, with appropriate electron-donating capabilities, not only effectively mitigate ACQ, ensuring efficient luminescence across a broad range of dopant concentrations, but also induce high-lying charge-transfer excited states that facilitate triplet-to-singlet spin-flip without causing undesired emission redshift or spectral broadening. Consequently, implementation of a high doping level of IDAD-BNCz resulted in highly efficient narrowband electroluminescence, featuring a remarkable full-width at half-maximum of 34 nm and record-setting external quantum efficiencies of 34.3 % and 31.8 % at maximum and 100 cd m−2, respectively. The combined steric and electronic effects arising from the steric-hindered donor introduction offer a compelling molecular design strategy to overcome critical challenges in MR-TADF emitters.  相似文献   

19.
Luminescent exciplexes based on a chiral electron donor and achiral acceptors are reported as a new approach to design circularly polarized (CP) and thermally activated delayed fluorescence (TADF) emitters. This strategy results in rather high CP luminescence (CPL) values with glum up to 7×10−3, one order of magnitude higher in comparison to the CPL signal recorded for the chiral donor alone (glum ∼7×10−4). This increase occurs concomitantly with a CPL sign inversion, as a result of the strong charge-transfer emission character, as experimentally and theoretically rationalized by using a covalent chiral donor-acceptor model. Interestingly, blue, green-yellow and red chiral luminescent exciplexes can be obtained by modifying with the electron accepting character of the achiral unit while keeping the same chiral donor unit. These results bring new (inter)molecular guidelines to obtain simply and efficiently multi-color CP-TADF emitters.  相似文献   

20.
New carbazole-phenylquinoline (CVz-PhQ) based iridium complexes were designed and synthesized for their application in red phosphorescence organic light-emitting diodes (PhOLEDs) and their photophysical, electrochemical and electroluminescence (EL) properties were investigated. The PhOLEDs were fabricated using bis[9-(2-(2-methoxyethoxy)ethyl)-3-(4-phenylquinolin-2-yl)-9H-carbazolato-N,C2′]iridium 2-pyrazinecarboxylic acid (EO-CVz-PhQ)2Ir(prz) and bis[9-(2-(2-methoxyethoxy)ethyl)-3-(4-phenylquinolin-2-yl)-9H-carbazolato-N,C2′]iridium 5-methyl-2-pyrazinecarboxylic acid (EO-CVz-PhQ)2Ir(mprz) as the emitter and PVK, co-doped with OXD-7 as the electron transport material and TPD as the hole transport material, as the polymer host. The red emissive PhOLEDs, based on the ITO/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/4,4′,4″-tris(carbazole-9-yl)triphenylamine (TCTA)/poly(N-vinylcarbazole) (PVK):N,N′-diphenyl-N,N′-(bis(3-methylphenyl)-[1,1-biphenyl]-4,4′-diamine (TPD):1,3-bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole-2-yl]benzene (OXD-7):Ir complex/cathode configuration, exhibited a maximum external quantum efficiency of 3.68% and a maximum luminance efficiency of 6.69 cd/A. Furthermore, by introducing a TCTA interlayer, the PhOLEDs showed only a slight efficiency roll off of 5.4% from a low current density (1.81 mA/cm2) to a high current density (44.59 mA/cm2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号