首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Covalent triazine frameworks (CTFs) show great potential in photocatalytic fields, while their practical efficiency is still limited due to rapid charge recombination. Here we report a nanospatial separation strategy for photoinduced electron-hole pairs of CTF-1 nanosheets via single-atom Co using facile pyrolysis and phosphorization to form stable Co–N3 (≈1.60 Å) architecture. HAADF-STEM image demonstrates Co atoms are uniformly dispersed onto ultrathin CTF-1. The local structure surrounding and chemical valent state of Co are systematically investigated by Fourier-transformed EXAFS and K-edge XANES, respectively. Co single atoms as oxidation centers can capture holes transferred from CTF-1, thus resulting in narrow bandgap and improved photo-exciton dissociation in the two-dimensional (2D) direction. The obtained Co/CTF-1 exhibits excellent efficiency of 99.9% for pollutant photodegradation, far outperforming that of pristine CTF-1 (68.8%). Nanospatial separation endows Co/CTF-1 with various micropollution removal capabilities, outstanding cyclic stability, and a widely effective pH range (1.0–11.0) under visible light. Furthermore, active oxidating radicals of h+ and ?O2? are dominant in photocatalytic degradation for various organic contaminants. This study motivates the atomic design and fabrication of 2D photocatalysts with excellent charge nanospatial separation.  相似文献   

2.
Mesoporous anatase TiO2 microspheres were prepared via solvothermal method. Ammonium tungstate was used as the W source, and ammonia gas flowing in an ammonothermal reactor as the N source for codoping. TiO2:(W,N) mesoporous microspheres, which were prepared from solvothermal treatment at 160 °C for 16 h and thermal ammonolysis at 500 °C for 2 h after calcination, have high specific surface area of 106 m2 g−1. XPS results indicate the presence of NO, Ni and W6+ in the codoped mesoporous TiO2 microspheres. Monodoping with N shifts the absorption band edge of anatase TiO2 from ultraviolet region to visible region. Although codoping with W makes the visible light absorbance decrease a little, the photocatalytic degradation of a cationic dye rhodamine B (RhB) on mesoporous TiO2:(W,N) microspheres is increased to 1.7 times of that on mesoporous TiO2:N microspheres. This may due to decreasing recombination centers by W-doping charge compensation.  相似文献   

3.
纳米TiO2光催化分解罗丹明B的动力学分析   总被引:3,自引:0,他引:3  
锐钛矿型TiO2禁带宽度为3 2eV,在波长小于387nm的紫外辐射激发下,价带电子跃迁到导带,光生电子和空穴分离,与表面接触组分可发生一系列氧化还原反应,可将有机污染物降解为简单的无机化合物[1]。TiO2微粒粒径的降低(几十纳米),吸收光谱发生蓝移,催化活性随粒径的减小而增强[2,3]。纳米TiO2对罗丹明B的光催化分解过程与罗丹明B在TiO2表面的吸附有关[4]。本文采用自制纳米TiO2在4W紫外灯直接照射下,光分解罗丹明B为表观一级反应,反应速率与罗丹明B起始浓度及催化剂用量有关。1 实验部分纳米TiO2 采用sol gel法制备。分别配制不同…  相似文献   

4.
Three 3-D coordination polymers, [Cu(cca)(4,4′-bipy)]n (1), [Co3(pda)3(1,10′-phen)2]n (2), and [Co(pda)(1,10′-phen)]n (3), have been synthesized from 4-carboxycinnamic acid (cca), 1,4′-phenylenediacrylic acid (pda), 4,4′-bipyridine (4,4′-bipy), 1,10′-phenanthroline (1,10′-phen), and Cu and Co salts under different conditions. The X-ray crystal structures of these three complexes are presented. Complex 1 exhibits a threefold 3-D α-Po interpenetration network. Complex 2 with a 3-D framework with six-connected single α-Po framework constructed from Co3 unit has been synthesized and characterized. Complex 3 shows a 3-D framework with bcu topology composed of 1-D rod-shaped secondary building units. Furthermore, the photocatalytic properties of 2 were studied. When excited by UV light, 2 exhibits photocatalytic activity, in 300?min, about 71% Rhodamine B decomposes.  相似文献   

5.
Anatase TiO2/nanocellulose composite was prepared for the first time via a one-step method at a relatively low temperature by using cellulose nanofibers as carrier and tetrabutyl titanate as titanium precursor. The morphology, structure and element composition of the composite were characterized by SEM, EDS, TEM, XRD, XPS and UV–vis DRS. The specific surface area and thermal stability of the composite were investigated by N2 adsorption–desorption and thermogravimetric analysis, respectively, and the band gaps of the prepared photocatalysts were calculated based on the UV–vis DRS results. In addition, the prepared composite was used for the photocatalytic degradation of methyl orange (aqueous solution, 40 mg L−1). It was found that the composite had a good morphology and anatase crystal structure, and Ti-O-C bond was formed between TiO2 and nanocellulose. The specific surface area of composite was increased and the thermal stability was decreased compared with the cellulose nanofiber. Moreover, the degradation rate of methyl orange was achieved as 99.72% within 30 min, and no obvious activity loss was observed after five cycles. This work might give some insights into the design of efficient photocatalysts for the treatment of organic dye wastewater.  相似文献   

6.
由高能面 TiO2纳米片 (TiO2-NSs) 组装成的 TiO2空心纳米盒 (TiO2-HNBs)显示出比单独 TiO2-NSs 更强的光催化性能, 但是 TiO2-HNBs 依然属于紫外光催化剂, 无法充分利用太阳能. 因此, 开发具有可见光响应的由高能面 TiO2-NSs 组装而成的 TiO2-HNBs 具有重要意义. 本文将立方体 TiOF2与含有 N 和 S 元素的生物分子蛋氨酸混合, 通过一步焙烧制备了具有可见光响应活性的 N 和 S 元素共掺杂的 TiO2-HNBs(掺杂催化剂标记为 TMx, 未掺杂催化剂标记为 Tx, x 代表焙烧温度).由立方体 TiOF2到锐钛矿相 TiO2空心纳米盒的转变是一个自模板转化过程. 氟离子的存在降低了 TiO2高能面(001)面的表面能, 从而使得高能面 TiO2纳米片的形成变得可能. 因此, 热处理立方体 TiOF2可得到由高能面 TiO2纳米片组装的 TiO2空心纳米盒.本文系统研究了焙烧温度 (300-500 ℃) 对所制 TiO2-HNBs 结构与光催化性能的影响. 结果发现, 在 350 ℃下焙烧, TiOF2完全转化成锐钛矿相 TiO2-HNBs. 但是焙烧蛋氨酸与 TiOF2的混合物, 需 400 ℃才能完全实现 TiOF2到锐钛矿相TiO2-HNBs 的转变. 这说明蛋氨酸的加入阻碍了 TiOF2向锐钛矿相 TiO2-HNBs 的转变. XPS 结果显示, 经过 400 ℃焙烧的蛋氨酸改性样品 (TM400), N 和 S 元素成功掺入了 TiO2-HNBs 晶格, 使其产生可见光催化活性.相对于 400 ℃焙烧 TiOF2所得样品 T400, 蛋氨酸改性的 TM400 催化剂可见光降解罗丹明 B 染料 (RhB) 和 NO 氧化的性能分别提升了 1.55 倍和 2.0 倍, 这与其更强的可见光吸收性能和光生载流子分离效率有关. 400 ℃焙烧的蛋氨酸改性的 TM400 可见光催化活性稳定, 连续 5 次可见光催化 RhB 降解后, 其活性没有明显改变, 显示了潜在的应用前景.  相似文献   

7.
8.
TiO2-based nanosheets (TNSs) co-modified by Fe2O3 and Ho2O3 were synthesized by one-pot hydrothermal method using Fe(NO3)3 and Ho(NO3)3 as precursors compositing with TiO2. The Fe2O3/Ho2O3-TNSs heterojunctions possessed a thickness of approximately 3–4 nm, large specific surface area of 210–310 cm2/g, with Fe2O3 and Ho2O3 nanoparticles highly dispersed over the surface of the nanosheets. The crystallization of the samples gradually increased with the amount of Fe2O3 nanoparticles, which was confirmed by the XRD, BET and Raman spectra, indicating that Ho2O3 and Fe2O3 influenced the crystallinity and structure evolution of the TNSs, besides, led to an improved the visible-light absorption. Surface photocurrent and fluorescence spectral studies revealed that the photo-generated charge carrier separation efficiency could be efficiently improved by an appropriate amount of modification. The Fe2O3/Ho2O3-TNSs exhibited synergistic effect on photocatalytic degradation of RhB as well as MO under visible light. The highest efficiency was obtained by 0.05%-Fe2O3/Ho2O3-TNSs (Fe:Ho:Ti = 0.05:1:100), which was 8.86 and 6.72 times than that of individual 1.0%-Ho2O3-TNSs (Ho:Ti = 1:100) and 0.05%-Fe2O3-TNSs (Fe:Ti = 0.05:100), respectively. The possible mechanism for enhanced visible-light-induced photocatalytic activity was proposed. Ho2O3 introduced in the photocatalysts may act as the hole capture while Fe2O3 may share the same Fermi levels with TNSs and serve as the electron capture center in the n-n-p system, which reduced the recombination rate of photo-induced electron-hole pairs.  相似文献   

9.
The photocatalytic degradation of environmentally non-benign, toxic organic pollutants such as bisphenol A (BPA), brilliant green (BG), or mixture of dyes have been carried out using g-C3N4-TiO2 (GNT) nanocomposites. The GNT nanocomposites were synthesized by using hydrothermal method with different compositions and these nanocomposites were characterized using the different techniques. X-ray diffraction revealed that the anatase phase of TiO2 has been retained in composites; while characteristic reflection of g-C3N4 at 27.07° (d = 3.22 Å) is not observed due to its lower content in the nanocomposites. Raman spectra confirms the formation of composites between TiO2 with g-C3N4. Furthermore nano-scale dimensions of the bare or composites have been proved by FE-SEM and HR-TEM analysis. X-ray photoelectron spectroscopy (XPS) shows the presence of C, N, Ti and O as a constituents, with peaks due to CC, NCN of g-C3N4. Among the different nanocomposites, g-C3N4-TiO2 catalyst having 30% g-C3N4 and 70% TiO2 in molar proportion (i.e. 30-GNT) is exhibiting the highest efficiency for degradation of the different dyes in correlation to its higher surface area, lower optical band gap as well as more visible-light absorption (i.e., λ > 400 nm) in the electromagnetic spectrum.  相似文献   

10.
Increasing environmental pollution caused by toxic dyes is a matter of great concern due to their hazardous nature. So it is crucial to develop processes which can destroy these dyes effectively. It has been generally agreed that reactive orange 5 (KGN) can be effectively degraded in aerated phosphotungstic acid (HPA) in a homogeneous reaction system using near-UV irradiation. In this paper, photocatalytic degradation of reactive orange 5 solutions with phosphotungstic acid was investigated, especially more attention was paid to the kinetic model and the anion degradation products. The results revealed that the photocatalytic degradation reaction of KGN with HPA in a homogenous solution can be described by Langmuir-Hinshelwood equation and Langmuir-Hinshewood kinetic model described it well. The reaction manifested the first order with lower concentration(⩽30 mg L−1) with the limiting rate constant and the adsorption constant in this case being 0.8098 mg L−1 min−1 and 4.359 10−2 L mg−1, respectively. The degradation mechanism of KGN with HPA is different from that with TiO2, the anion products of the two reaction systems are the same. The difference in degradation mechanism of KGN with HPA from that with TiO2 is caused by the nature of the photocatalyst.   相似文献   

11.
In this paper, we report synthesis of MoSe2-polyaniline by in-situ polymerization method. Simple and eco-friendly hydrothermal technique is used for the synthesis of MoSe2. Sample characterizations were done using Field Emission Scanning Electron Microscopy (FESEM), X-Ray Diffraction (XRD), UV–vis Spectroscopy, Fourier Transform Infra-Red Spectroscopy (FTIR) and Raman Spectroscopy. Photocatalytic dye degradation was performed using nanocomposite on Methylene blue (MB) and Methyl orange (MO). Photocatalytic degradation efficiency (?) was found to be ~65% and ~94% for MB and MO, respectively. Reaction kinetics were studied and fitted well with pseudo first order model because of the mesoporous structure of polyaniline (PANI). Material reusability and regenerability was also checked for number of cycles.  相似文献   

12.
Lewis acid/base addition between Ln(NO3)3 · 6H2O (Ln = Pr, Nd, Sm, Eu, Tb and Lu) and H2salen [H2salen = N,N′-ethylenebis(salicylideneimine)] gives rise to an array of coordination polymeric structures. Crystal structural analysis reveals that Salen effectively functions as a bridging ligand in these compounds. The size of the lanthanide ions controls the structures of these Salen lanthanide complexes. Two representative structures with one dimensional and two dimensional topologies, viz. [Pr(H2salen)(NO3)3(CH3OH)2]n (1) and [Ln(H2salen)1.5(NO3)3]n [Ln = Pr (2), Nd (3), Sm (4), Eu (5), Tb (6) and Lu (7)] are reported. Luminescent spectra of complexes 4 and 5 exhibit characteristic metal-centered emission lines. However, the characteristic luminescence of the terbium(III) ion is not observed either in solution or in the solid state of complex 6.  相似文献   

13.
The photocatalytic degradation of organochlorine pesticides including -, β-, γ-, δ-hexachlorobenzene (BHC), dicofol and cypermethrin were carried out on a nano-TiO2 coated films under UV irradiation in the air. The photocatalytic conditions, including the amount of TiO2, irradiation time and the intensity of light were optimized. The pesticides were most effectively degraded under the condition of 2.24 mg/cm2 on TiO2 film and a 400 W UV irradiation of high-pressure mercury lamp with a wavelength of 365 nm. A typical organochlorine pesticide, 20 μg -BHC, was dipped onto the TiO2 film surface and degraded completely within 20 min. In addition, the photocatalytic degradation pathways on the nano-TiO2 coated film were discussed.  相似文献   

14.
In this work, Fe2O3 nanoparticles, abbreviated as OL and OS, were facilely synthesized by the combustion procedure using L-lysine and L-serine as organic fuels, respectively. Also, the OL and OS samples were identified using different instruments such as Raman spectrometer, FT-IR spectrophotometer, UV–Vis spectrophotometer, XRD, HR-TEM, BET surface area, and FE-SEM. The XRD confirmed that the mean grain size of OL and OS samples is 42.23 and 33.16 nm, respectively. The HR-TEM images confirmed that irregular, hexagonal, and spherical shapes, have an average diameter of 39.13 and 34.28 nm, were observed in the OL and OS samples, respectively. The BET surface area of the OL and OS samples is 16.20 and 28.34 m2/g, respectively. Additionally, the OL and OS samples were accomplished for the photocatalytic degradation of methylene blue dye in the absence and presence of hydrogen peroxide. The % degradation of 45 mL of 25 mg/L of methylene blue dye in the case of using OL and OS samples in the absence of hydrogen peroxide is 55.23 and 63.64 % after 120 min, respectively. Also, in the presence of hydrogen peroxide, the % degradation in the case of using OL and OS samples is 100 % after 35 and 25 min, respectively.  相似文献   

15.
采用水热法制备Bi2WO6-BiPO4异质结光催化剂.利用模拟太阳光照射下的罗丹明B降解实验评价了Bi2WO6-BiPO4复合物的光催化性能.结果表明,Bi2WO6-BiPO4光催化活性比Bi2WO6和BiPO4高得多.当Bi2WO6与BiPO4的摩尔比为1:1时复合光催化剂对罗丹明B的降解率最高.Bi2WO6-BiPO4催化活性增强主要归结为两者之间形成了有效的异质结结构,其内建电场能够促进光生载流子的分离.同时,Bi2WO6的加入增强了其对可见光的吸收.研究表明O2^· -和h^+在光催化降解过程中是主要的活性物种.  相似文献   

16.
Two copper(II) coordination polymers, {[Cu2(btre)(hsuc)Cl(H2O)]·1.5H2O}n (1) and {[Cu2(btre)(hsuc)Br(H2O)]·1.5H2O}n (2) (btre = 1,2-bis(1,2,4-triazol-4-yl)ethane, H3hsuc = 2-hydroxysuccinic acid), were synthesized by the hydrothermal method via in situ hydroxylation reaction with fumarate (fum), btre and CuCl2/CuBr2, and characterized by elemental analyses, IR, TG and X-ray diffraction. 1 and 2 are isostructural and show a 4-connected 2-D network based on [Cu2O] dimers. 1 and 2 show good photocatalytic activity for the degradation of organic dyes methylene blue and methyl orange under UV light irradiation.  相似文献   

17.
利用太阳能驱动半导体光催化剂进行光催化降解污染物和产氢被认为是解决环境问题和能源危机最有效的方法之一.在众多的半导体光催化剂中,TiO2因其优异的化学稳定性、环境友好和成本低等优点,在光催化领域具有不可或缺的作用.介孔TiO2由于具有独特的介孔结构,更有利于光催化过程中反应物的吸附和传输.然而,单一TiO2具有较高的光生载流子重组效率和低的光利用率等缺点,导致其光催化活性低.通过负载助催化剂可以增强光吸收、促进光生载流子的分离以及提供更多活性位点,是提高光催化活性的一种有效策略.目前,常用的高效助催化剂主要为贵金属,如Pt,Pd和Au等,但昂贵的价格及稀缺性限制了其在未来的广泛应用.因此,寻找新型的非贵金属助催化剂来提高光催化剂的活性具有重要意义.MXene作为一种新型的二维过渡金属碳化物和/或氮化物,具有丰富的表面亲水性官能团、良好的金属导电性和较高的载流子迁移率等特性,适合用于光催化中作为助催化剂来提高光催化性能.受此启发,本文利用静电自组装策略将介孔TiO2纳米颗粒均匀地固定在Ti3C2MXene助催化剂上,构建了紧密的介孔TiO2/Ti3C2复合材料,并研究其光催化降解甲基橙(MO)和产氢性能.Zeta电位测试结果表明,带有相反表面电荷的介孔TiO2和Ti3C2可以通过静电作用构筑稳定的复合材料.X-射线粉末衍射、拉曼光谱、X-射线光电子能谱(XPS)、透射电子显微镜和高分辨透射电子显微镜等表征也进一步表明,成功制备了介孔TiO2/Ti3C2复合材料.XPS也证明在复合材料中光生电子从TiO2转移到Ti3C2助催化剂上,表明两者之间具有强相互作用.BET测试结果表明,相比单一的介孔TiO2,复合材料具有更大的比表面积和孔体积,可提供更多的活性位点,有利于提高光催化活性.紫外-可见漫反射光谱表明,Ti3C2助催化剂的引入提高了材料的光吸收能力.荧光光谱、时间分辨荧光光谱、光电流密度和电化学阻抗等测试结果表明,复合材料具有优异的光生载流子分离和转移能力.在光催化性能测试中,最佳Ti3C2含量(3wt%)的介孔TiO2/Ti3C2复合材料在40 min内对MO的光催化降解效率可达99.6%,并利用自由基捕获实验和电子自旋共振表征证实了活性物种·O2-和·OH在光催化降解过程中起主要作用.此外,该复合材料也表现出了较好的产氢性能(218.85μmolg-1h-1),约为单一介孔TiO2的5.6倍,且三次循环后仍保持稳定的产氢效率.综上,MXene族材料可以作为一种高效的非贵金属助催化剂应用于光催化领域.  相似文献   

18.
Solid-phase photocatalytic degradation of polystyrene (PS) plastic with TiO2 as photocatalyst was investigated in the ambient air under ultraviolet light irradiation. Higher weight loss rate, lower average molecular weight, increased carbonyl peak intensity, less volatile organics and more CO2 emitted with irradiation in PS-TiO2 composite sample compared to pure PS sample were observed. These facts indicated the higher photodegradation rate of PS-TiO2 sample than that of PS sample, and emphasized the potential of the composite sample in bring about complete photodegradation of polystyrene plastic. It is implied that the degradation initially occurred over TiO2 particles, followed by the diffusion reaction with the aid of reactive oxygen species generated on TiO2 particle surface.  相似文献   

19.
Fe3+-TiO2/SiO2光催化降解罗丹明B的研究   总被引:25,自引:0,他引:25  
以硅胶为载体,采用溶胶-凝胶法制备了不同掺杂量的Fe3+-TiO2/SiO2光催化剂,并采用SEM,Raman和DRS等手段对其进行了分析和表征.以氙灯为光源,通过对可溶性染料罗丹明B的降解反应,考察了Fe3+-TiO2/SiO2催化剂的光催化活性,探讨了光催化反应中溶液pH值和起始浓度对催化反应的影响.  相似文献   

20.
A photocatalytic degradation method was developed for polychlorobiphenyl (PCB) and organochloride pesticide (OCP) discrimination and quantification. A mixture of Aroclor 1260 and p,p′-DDT was irradiated at 254 nm by UV lamp (40 W) in the presence of TiO2 (30 mg mL−1 non-aqueous solution). Comparison of gas chromatograms showed that p,p′-DDT signals decreased significantly after irradiation, while Aroclor 1260s chromatograms did not show any difference before and after irradiation. Detection limits were 0.30 mg L−1 and 0.15 mg L−1 for p,p′-DDT and Aroclor 1260, respectively. The method was applied to spiked egg samples, the recoveries were found as 72% for DDT and 82.01% for Aroclor 1260.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号