首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, water pollution has posed a serious threat to aquatic organisms and humans. Advanced oxidation processes (AOPs) based on activated peroxymonosulfate (PMS) show high oxidation, good selectivity, wide pH range and no secondary pollution in the removal of organic pollutants in water. Carbon-based materials are emerging green catalysts that can effectively activate persulfates to generate radical and non-radical active species to degrade organic pollutants. Compared with transition metal catalysts, carbon-based materials are widely used in SR-AOPs because of their low cost, non-toxicity, acid and alkali resistance, large specific surface area, and scalable surface charge, which can be used for selective control of specific water pollutants. This paper mainly presents several carbon-based materials used to activate PMS, including raw carbon materials and modified carbon materials (heteroatom-doped and metal-doped), analyzes and summarizes the mechanism of activating PMS by carbon-based catalysts, and discusses the influencing factors (temperature, pH, PMS concentration, catalyst concentration, inorganic anions, inorganic cations and dissolved oxygen) in the activation process. Finally, the future challenges and prospects of carbon-based materials in water pollution control are also presented.  相似文献   

2.
In this mini-review, the homogeneous and heterogeneous EAOPs-oxidant processes were summarized. The reaction mechanisms of different EAOPs combined with different oxidants are elucidated in detail, as well as the synergistic effect for improving the treatment efficiency.  相似文献   

3.
This review summarizes the recent progress in anodic oxidation of organic pollutant for water and wastewater treatment. It supplies the advances in anodes fabrication to improve the anodic performance by different modifications and preparation strategies, focusing on non-active anodes including boron-doped diamond (BDD), PbO2, SnO2 and Ti-based anode (e.g., Ti4O7, blue titanium oxide). Meanwhile, the tendency of anodic oxidation coupled or combined with other processes (adsorption, membrane separation, biological treatment and advanced oxidation process) for pretreatment or advanced treatment of organic pollutant is presented. Finally, anodic oxidation for environmental application is briefly described; several challenges need to be overcome and perspectives for future study are critically proposed.  相似文献   

4.
This work reports on a comparative study of the electrochemical performance of carbon nanotubes-based electrodes in micellar media and their application for amperometric detection in micellar electrokinetic capillary chromatography (MEKC) separations. These electrodes were prepared in two different ways: immobilization of a layer of carbon nanotubes dispersed in polyethylenimine (PEI), ethanol or Nafion onto glassy carbon electrodes or preparation of paste electrodes using mineral oil as binder. Scanning electron microscopy (SEM) was employed for surface morphology characterization while cyclic voltammetry of background electrolyte was used for capacitance estimation. The amperometric responses to hydrogen peroxide, amitrol, diuron and 2,3-diclorophenol (2,3CP) in the presence and in the absence of sodium dodecylsulphate (SDS) were studied by flow injection analysis (FIA), demonstrating that the electrocatalytic activity, background current and electroanalytical performance were strongly dependent on the electrodes preparation procedure. Glassy carbon electrodes modified with carbon nanotubes dispersed in PEI (GC/(CNT/PEI)) displayed the most adequate performance in micellar media, maintaining good electrocatalytic properties combined with acceptable background currents and resistance to passivation. The advantages of using GC/(CNT/PEI) as detectors in capillary electrophoresis were illustrated for the MEKC separations of phenolic pollutants (phenol, 3-chlorophenol, 2,3-dichlorophenol and 4-nitrophenol) and herbicides (amitrol, asulam, diuron, fenuron, monuron and chlortoluron).  相似文献   

5.
《中国化学快报》2020,31(10):2539-2548
Global climate change, growing population, and environmental pollution underscore the need for a greater focus on providing advanced water treatment technologies. Although electrochemical based-processes are becoming promising solutions, they still face challenges owing to mass transport and upscaling which hinder the exploitation of this technology. Electrode design and reactor configuration are key factors for achieving operational improvements. The electroactive membrane has proven to be a breakthrough technology integrating electrochemistry and membrane separation with an enhanced mass transport by convection. In this review article, we discuss recent progress in environmental applications of electroactive membranes with particular focus on those composed of carbon nanotubes (CNT) due to their intriguing physicochemical properties. Their applications in degradation of refractory contaminants, detoxification and sequestration of toxic heavy metal ions, and membrane fouling alleviations are systematically reviewed. We then discuss the existing limitations and opportunities for future research. The development of advanced electroactive systems depends on interdisciplinary collaborations in the areas of materials, electrochemistry, membrane development, and environmental sciences.  相似文献   

6.
《中国化学快报》2021,32(10):2975-2984
Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of MOFs and the latest research progress of MOFs-based photocatalysts to degrade organic pollutants in water, such as organic dyes, pharmaceuticals and personal care products, and other organic pollutants. The main characteristics of different synthesis methods of MOFs, the main design strategies of MOFs-based photocatalysts, and the excellent performance of photocatalytic degradation of organic pollutants are summarized. At the end of this paper, the practical application of MOFs, the current limitations of MOFs, the synthesis methods of MOFs, and the future development trend of MOFs photocatalysts are explained.  相似文献   

7.
孔令然  张树永 《大学化学》2016,31(10):84-88
对于碳氧化反应,在不同温度范围内,温度对反应速率常数的影响呈现不同规律的现象进行了讨论。指出第一阶段主要由氧气在碳表面化学吸附平衡受温度的影响决定。第二阶段则由碳在二氧化碳中发生气化反应,特别是其中的酮基脱附步骤决定。对已有的反应机理进行了比较,提出了新的简化机理,并采用速率控制步骤近似和平衡近似对机理进行了近似处理,得出的第二阶段动力学方程可以较好地解释相关实验规律。  相似文献   

8.
The rapidly growing existence of a number of contaminants (i.e. heavy metals, dye compounds, explosives and pesticides etc.) in environment is an alarming concern not only due to their harmful impacts for the environment bur also due to their potential high risk for human health. Thus, the careful and sensitive detection of these environmental contaminants is ver crucial. Electrochemical sensors combined with molecularly imprinted polymers (MIPs) become an attractive area for environmental monitoring. Benefiting from their great features such as high chemical and physical stability, cheap preparation process, excellent selectivity, sensitivity and fast response towards the target compound/s.This review paper aims to present and highlight the latest progresses in the design and development of novel electrochemical sensor systems composed of MIPs and carbon paste electrodes (CPEs) for the sensitive detection of pollutants in environmental samples.  相似文献   

9.
Vacuum-assisted headspace solid-phase microextraction (Vac-HSSPME) is an emerging analytical technique, which further advances HSSPME by providing lower detection limits of analytes with poor volatility at shorter extraction times. This review discusses the theoretical aspects and possibilities of the Vac-HSSPME technique for analysis of environmental samples. Optimization of key parameters, currently available equipment and methods for quantification of organic pollutants in water and soil are considered. Key problems and limitations of the technique are discussed along with possible approaches for its future development. The technique has a well-developed theory, which could be used for modeling of the extraction process, faster method development, and optimization. Wider application of the technique is limited by the lack of automation, which, however, seems possible to develop and implement by manufacturers of commercial multi-purpose autosamplers for gas chromatography instruments. It has been shown that Vac-HSSPME allows decreasing cross-contamination of samples from the laboratory air, which is advantageous for identification and quantification of trace environmental pollutants. Simple equipment for the technique makes it possible to apply for on-site sample preparation and analysis of environmental samples.  相似文献   

10.
Multi-walled carbon nanotubes (CNTs) were submitted to chemical and thermal treatments in order to incorporate different heteroatoms on the surface. O-, S- and N-containing groups were successfully introduced onto the CNTs without significant changes of the textural properties. The cata-lytic activity of these heteroatom-modified CNTs was studied in two liquid phase oxidation processes: catalytic ozonation and catalytic wet air oxidation (CWAO), using oxalic acid and phenol as model compounds. In both cases, the presence of strongly acidic O-containing groups was found to decrease the catalytic activity of the CNTs. On the other hand, the introduction of S species (mainly sulfonic acids) enhanced the removal rate of the model compounds, particularly in the CWAO of phenol. Additional experiments were performed with a radical scavenger and sodium persulfate, in order to clarify the reaction mechanism. Nitrogen functionalities improve the catalytic performance of the original CNTs, regardless of the process or of the pollutant.  相似文献   

11.
构建了不同百分含量的氮掺杂的多壁碳纳米管化学修饰石墨电极,利用线性扫描伏安法及循环伏安法研究了双酚A(BPA)在修饰电极上的电化学行为。提出了一种灵敏、简便的直接检测双酚A的电化学分析方法。在pH6.98的PBS缓冲溶液中,在电位0.20 V富集后,该修饰电极在0.680 V出现一个灵敏的、峰形好的氧化峰。表明氮掺杂多壁碳纳米管薄膜对双酚A的氧化表现出一定的催化作用,能显著提高双酚A的氧化峰电流。在优化条件下,采用线性扫描伏安法对双酚A进行测定。双酚A的氧化峰电流与其浓度在2.5×10-7~1.0×10-4 mol/L之间有很好的线性关系(R为0.996),检出限为5.0×10-8mol/L。电极已初步用于实际样品中BPA的测定。  相似文献   

12.
《中国化学快报》2020,31(10):2575-2582
Heavy metal complexes with high mobility are widely distributed in wastewater from modern industries, which are more stable and refractory than free heavy metal ions. Their removals from wastewater draw increasing attentions and various technologies have been developed, among which advanced oxidation processes (AOPs) are more effectively and promising. Progresses on five representative types of AOPs, including Fenton (like) oxidation, electrochemical oxidation, photocatalytic oxidation, ozonation and discharge plasma oxidation for heavy metal complexes degradation are summarized in this review. Their rationales, advantages, applications, challenges and prospects are introduced independently. Combinations among these AOPs, such as electrochemical Fenton oxidation and photoelectrocatalytic oxidation, are also comprehensively highlighted. Future efforts should be made to reduce acid requirement and scale up for practical applications of AOPs for heavy metal complex degradation efficiently and cost-effectively.  相似文献   

13.
14.
The electrochemical advanced oxidation processes(EAOPs) have been extensively applied in the treatment of organic pollutants degradation.Herein,the mini review provides the coupling systems about EAOPs and different oxidants(e.g.,persulfate(PS),peroxymonosulfate(PMS),and ozone(O_3)),including EAOPs-PS systems,EAOPs-PMS systems,EAOPs-peroxone systems,and photoelectro-oxidants systems,for the organic compounds degradation.The coupling system of EAOPs with oxidants is an effective way to improve the generated free radicals(e.g.,HO~·and SO_4~(·-)) concentration and to accelerate pollutant degradation.In this review,we make a summary of the homogeneous and heterogeneous EAOPs-oxidant processes.The reaction mechanisms of EAOPs combined with different oxidants are elucidated in detail,as well as the synergistic effect for improving the degradation and mineralization efficiency.  相似文献   

15.
Magnetic solid-phase extraction (M-SPE) is a procedure based on the use of magnetic sorbents for the separation and preconcentration of different organic and inorganic analytes from large sample volumes. The magnetic sorbent is added to the sample solution and the target analyte is adsorbed onto the surface of the magnetic sorbent particles (M-SPs). Analyte-M-SPs are separated from the sample solution by applying an external magnetic field and, after elution with the appropriate solvent, the recovered analyte is analyzed. This approach has several advantages over traditional solid phase extraction as it avoids time-consuming and tedious on-column SPE procedures and it provides a rapid and simple analyte separation that avoids the need for centrifugation or filtration steps. As a consequence, in the past few years a great deal of research has been focused on M-SPE, including the development of new sorbents and novel automation strategies. In recent years, the use of magnetic carbon nanotubes (M-CNTs) as a sorption substrate in M-SPE has become an active area of research. These materials have exceptional mechanical, electrical, optical and magnetic properties and they also have an extremely large surface area and varied possibilities for functionalization. This review covers the synthesis of M-CNTs and the different approaches for the use of these compounds in M-SPE. The performance, general characteristics and applications of M-SPE based on magnetic carbon nanotubes for organic and inorganic analysis have been evaluated on the basis of more than 110 references. Finally, some important challenges with respect the use of magnetic carbon nanotubes in M-SPE are discussed.  相似文献   

16.
17.
Proton-coupled electron transfer and hydrogen bonding reactions are ubiquitous requisites for the occurrence of many natural processes and man-made applications. These reactions either involve the direct transfer of charge (in the form of protons and electrons) or contain sufficient electrostatic characteristics to be affected by the application of a potential. Hence, they can be analyzed or initiated by voltammetry, which is itself highly sensitive yet tolerant to a variety of interferences and so can be used under various experimental conditions. The purpose of this review is to highlight the potential of this electrochemical technique for studying important processes such as those involved in energy storage, CO2 reduction, and sensor applications.  相似文献   

18.
All organic compounds contain carbon. Most contain hydrogen. This brief study discusses the enthalpy of formation of a collection of organic compounds containing only oxygen or nitrogen accompanying the carbon.  相似文献   

19.
碳纳米管的最新制备技术及生长机理   总被引:8,自引:0,他引:8  
结合笔者的工作综述了碳纳米管的制备技术及生长机理的最新研究进展,重点介绍了近两年来碳纳米管制备的进展情况,包括传统制备方法的改进(电弧放电法、化学气相沉积法和激光蒸发法)、新型制备技术、特殊结构的碳纳米管制备;同时探讨了碳纳米管的各种生长机理;最后提出了碳纳米管制备技术和生长机理的发展方向。  相似文献   

20.
Polyaniline (PANI) nanotubes were prepared by the oxidation of aniline in solutions of acetic or succinic acid, and subsequently carbonized in a nitrogen atmosphere during thermogravimetric analysis running up to 830 °C. The nanotubular morphology of PANI was preserved after carbonization. The molecular structure of the original PANI and of the carbonized products has been analyzed by FTIR and Raman spectroscopies. Carbonized PANI nanotubes contained about 8 wt.% of nitrogen. The molecular structure, thermal stability, and morphology of carbonized PANI nanotubes were compared with the properties of commercial multi-walled carbon nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号