首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Catalytic oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) have garnered great attention as the key character in metal-air batteries.Herein,we developed a superior nonprecious bifunctional oxygen electrocatalyst,fabricated through spatial confinement of Fe/Fe_3 C nanocrystals in pyridinic N and Fe-Nx rich carbon nanotubes(Fe/Fe_3 C-N-CNTs).During ORR,the resultant electrocatalyst exhibits positive onset pote ntial of 1.0 V(vs.RHE),large half-wave potentials of 0.88 V(vs.RHE),which is more positive than Pt/C(0.98 V and 0.83 V,respectively).Remarkably,Fe/Fe_3 C-N-CNTs exhibits outstanding durability and great methanol tolerance,exceeding Pt/C and most reported nonprecious metal-based oxygen reduction electrocatalysts.Moreover,Fe/Fe_3 C-N-CNTs show a markedly low potential at j=10 mA/cm~2,small Tafel slopes and extremely high stability for OER.Impressively,the Fe/Fe_3 C-N-CNTs-based Zn-air batteries demonstrate high power density of 183 mW/cm~2 and robust charge/discharge stability.It is revealed that the spatial confinement effect can impede the aggregation and corrosion of Fe/Fe_3 C nanocrystals.Meanwhile,Fe/Fe_3 C and Fe-Nx play synergistic effect on boosting the ORR/OER activity,which provides an important guideline for construction of inexpensive nonprecious metal-carbon hybrid nanomaterials.  相似文献   

2.
Transitional metal alloy and compounds have been developed as the low cost and efficient bifunctional electrocatalysts for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER).However,a high mass loading of these catalysts is commonly needed to achieve acceptable catalytic performance,which could cause such problems as battery weight gain,mass transport blocking,and catalyst loss.We report herein the preparation of fine CoNi nanoparticles(5-6 nm)anchored inside a nitrogendoped defective carbon nanotube network(CoNi@N-DCNT)by a transient Joule heating method.When utilized as an electrocatalyst for oxygen reduction and evolution in alkaline media,the CoNi@N-DCNT film catalyst with a very low mass loading of 0.06 mg cm-2 showed excellent bifunctional catalytic performance.For ORR,the onset potential(Eonset)and the half-wave potential(E1/2)were 0.92 V versus reversible hydrogen electrode(vs.RHE)and 0.83 V(vs.RHE),respectively.For OER,the potential at the current density(J)of 10 mA cm-2(E10)was 1.53 V,resulting in an overpotential of 300 mV much lower than that of the commercial RuO2 catalyst(320 mV).The potential gap between E1/2 and E10 was as small as 0.7 V.Considering the low mass loading,the mass activity at E10 reached at 123.2 A g-1,much larger than that of the RuO2 catalyst and literature results of transitional metal-based bifunctional catalysts.Moreover,the CoNi@N-DCNT film catalyst showed very good long-term stability during the ORR and OER test.The excellent bifunctional catalytic performance could be attributed to the synergistic effect of the bimetal alloy.  相似文献   

3.
The electrocatalyzed oxygen reduction and evolution reactions (ORR and OER, respectively) are the core components of many energy conversion systems, including water splitting, fuel cells, and metal–air batteries. Rational design of highly efficient non‐noble materials as bifunctional ORR/OER electrocatalysts is of great importance for large‐scale practical applications. A new strongly coupled hybrid material is presented, which comprises CoOx nanoparticles rich in oxygen vacancies grown on B,N‐decorated graphene (CoOx NPs/BNG) and operates as an efficient bifunctional OER/ORR electrocatalyst. Advanced spectroscopic techniques were used to confirm formation of abundant oxygen vacancies and strong Co−N−C bridging bonds within the CoOx NPs/BNG hybrid. Surprisingly, the CoOx NPs/BNG hybrid electrocatalyst is highly efficient for the OER with a low overpotential and Tafel slope, and is active in the ORR with a positive half‐wave potential and high limiting current density in alkaline medium.  相似文献   

4.
The electrocatalyzed oxygen reduction and evolution reactions (ORR and OER, respectively) are the core components of many energy conversion systems, including water splitting, fuel cells, and metal–air batteries. Rational design of highly efficient non-noble materials as bifunctional ORR/OER electrocatalysts is of great importance for large-scale practical applications. A new strongly coupled hybrid material is presented, which comprises CoOx nanoparticles rich in oxygen vacancies grown on B,N-decorated graphene (CoOx NPs/BNG) and operates as an efficient bifunctional OER/ORR electrocatalyst. Advanced spectroscopic techniques were used to confirm formation of abundant oxygen vacancies and strong Co−N−C bridging bonds within the CoOx NPs/BNG hybrid. Surprisingly, the CoOx NPs/BNG hybrid electrocatalyst is highly efficient for the OER with a low overpotential and Tafel slope, and is active in the ORR with a positive half-wave potential and high limiting current density in alkaline medium.  相似文献   

5.
Developing noble-metal-free bifunctional oxygen electrocatalysts is of great significance for energy conversion and storage systems. Herein, we have developed a transformation method for growing NiMn-based bimetal–organic framework (NiMn-MOF) nanosheets on multi-channel carbon fibers (MCCF) as a bifunctional oxygen electrocatalyst. Owing to the desired components and architecture, the MCCF/NiMn-MOFs manifest comparable electrocatalytic performance towards oxygen reduction reaction (ORR) with the commercial Pt/C electrocatalyst and superior performance towards oxygen evolution reaction (OER) to the benchmark RuO2 electrocatalyst. X-ray absorption fine structure (XAFS) spectroscopy and density functional theory (DFT) calculations reveal that the strong synergetic effect of adjacent Ni and Mn nodes within MCCF/NiMn-MOFs effectively promotes the thermodynamic formation of key *O and *OOH intermediates over active NiO6 centers towards fast ORR and OER kinetics.  相似文献   

6.
The oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) have attracted increasing attention for the sake of clean, renewable, and efficient energy technologies in recent years. The design of ORR/OER bifunctional electrocatalysts is a challenging task in the promotion of highly efficient rechargeable metal-air batteries as well as regenerative fuel cells. Owing to the wide adaptability of different types and ratios of metals in the interlayer space as well as the adjustable interlayer distance, composite materials with layered double hydroxides (LDHs) and their derivatives have recently been registered as electrode materials and catalysts supports for various electrochemical reactions. This study examines the recent development of bifunctional electrocatalysts based on LDHs for ORR/OER to expand the application of LDHs in the field of energy storage and conversion. Various bifunctional electrocatalysts associated with LDHs are discussed in detail to improve their performance. Finally, existing problems and future prospects for improving the performance of LDHs bifunctional electrocatalysts are proposed.  相似文献   

7.
《中国化学快报》2021,32(9):2841-2845
Substituent effect of metal porphyrin molecular catalysts plays a crucial role in determining the catalytic activity of oxygen electrocatalysis. Herein, substituent position effect of Co porphyrins on oxygen electrocatalysis, including the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), was investigated. Two Co porphyrins, namely 2,4,6-OMe-CoP and 3,4,5-OMe-CoP, were selected as the research objects. The ORR and OER performance was evaluated by drop-coating molecular catalysts on carbon nanotubes (CNTs). The resulted 3,4,5-OMe-CoP/CNT exhibited high bifunctional electrocatalytic activities and better long-term stability for both ORR and OER than 2,4,6-OMe-CoP/CNT. Furthermore, when applied in the Zn-air battery, 3,4,5-OMe-CoP/CNT exhibited comparable performance to that with precious metal-based materials. The enhanced catalytic activity may be attributed to the improved charge transfer rate, mass transfer and hydrophilicity. This work provides an effective strategy to further enhance catalytic activity by introducing substituent position effect, which is of great importance for developing more efficient energy-related electrocatalysts.  相似文献   

8.
Developing noble‐metal‐free bifunctional oxygen electrocatalysts is of great significance for energy conversion and storage systems. Herein, we have developed a transformation method for growing NiMn‐based bimetal–organic framework (NiMn‐MOF) nanosheets on multi‐channel carbon fibers (MCCF) as a bifunctional oxygen electrocatalyst. Owing to the desired components and architecture, the MCCF/NiMn‐MOFs manifest comparable electrocatalytic performance towards oxygen reduction reaction (ORR) with the commercial Pt/C electrocatalyst and superior performance towards oxygen evolution reaction (OER) to the benchmark RuO2 electrocatalyst. X‐ray absorption fine structure (XAFS) spectroscopy and density functional theory (DFT) calculations reveal that the strong synergetic effect of adjacent Ni and Mn nodes within MCCF/NiMn‐MOFs effectively promotes the thermodynamic formation of key *O and *OOH intermediates over active NiO6 centers towards fast ORR and OER kinetics.  相似文献   

9.
The lack of high‐efficient, low‐cost, and durable bifunctional electrocatalysts that act simultaneously for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is currently one of the major obstacles to commercializing the electrical rechargeability of zinc–air batteries. A nanocomposite CoO‐NiO‐NiCo bifunctional electrocatalyst supported by nitrogen‐doped multiwall carbon nanotubes (NCNT/CoO‐NiO‐NiCo) exhibits excellent activity and stability for the ORR/OER in alkaline media. More importantly, real air cathodes made from the bifunctional NCNT/CoO‐NiO‐NiCo catalysts further demonstrated superior performance to state‐of‐the‐art Pt/C or Pt/C+IrO2 catalysts in primary and rechargeable zinc–air batteries.  相似文献   

10.
The proper utilization of renewable energy sources has emerged as a major challenge in our pursuit of a sustainable and carbon-neutral energy landscape. Small molecule activation is a key component for proper utilization of renewable energy resources, where O2/H2O redox couple is reckoned to be a potential game changer. In this regard, electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have become the prime interest of catalyst designers. Typically, these ORR and OER electrocatalysts are developed distinctly; however, very soon, the requirement of a bidirectional ORR/OER electrocatalyst becomes obvious for practical applicability and rapid energy transduction purposes. A bidirectional catalyst is defined as a catalyst capable of driving a redox reaction in opposing directions. This review has portrayed the development of enzyme structure-inspired design of molecular bidirectional ORR/OER catalysts. The strategic incorporation of secondary and outer coordination sphere features has significantly enhanced the performance of these catalysts, which can be monitored via the key catalytic parameters. These bifunctional OER/ORR catalysts are vital for metal-air battery and fuel cell applications and appropriately poised to lay the foundation for an efficient, economical, and eco-friendly pathway for sustainable energy usage with the rational assembly of energy converting and storage devices.  相似文献   

11.
Platinum (Pt) and iridium (Ir) catalysts are well known to strongly enhance the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics, respectively. Pt–Ir-based bimetallic compounds along with carbon-supported titanium oxides (C–TiO2) have been synthesized for the application as electrocatalysts in lithium oxygen batteries. Transition metal oxide-based bimetallic nanocomposites (Pt–Ir/C–TiO2) were prepared by an incipient wetness impregnation technique. The as-prepared electrocatalysts were composed of a well-dispersed homogenous alloy of nanoparticles as confirmed by X-ray diffraction patterns and Fourier transform scanning electron microscopy analyses. The electrochemical characterizations reveal that the Pt–Ir/C–TiO2 electrocatalysts were bifunctional with high activity for both ORR and OER. When applied as an air cathode catalyst in lithium-air batteries, the electrocatalyst improved the battery performance in terms of capacity, reversibility, and cycle life compared to that of cathodes without any catalysts.  相似文献   

12.
金属-空气二次电池在可再生电能的存储和转换方面具有广阔的应用前景.在金属-空气二次电池的空气侧,放电时发生氧还原反应(ORR),充电时发生氧析出反应(OER).然而, ORR和OER反应的动力学过程缓慢,因此限制了金属-空气二次电池的实际应用.因此,发展高性能ORR和OER电催化剂对金属-空气二次电池的发展尤为重要.目前,大多数的研究集中在ORR或OER的单功能电催化剂上,而关于双功能电催化剂的研究和综述相对较少.两个反应均具有较高的过电位和较缓慢的动力学过程,而且充电过程的高电压会导致ORR催化剂失活,反之亦然.因此,开发针对这两个反应均具有高活性和高稳定性的双功能电催化剂极具挑战性.近年来,研究者对具有低成本和高性能双功能电催化剂进行了探索.这些双功能电催化剂包括碳基材料,过渡金属材料和复合材料.双功能电催化剂可以通过提高本征活性和表观活性两种策略来提高其整体的活性.其中,本征活性与晶体结构和电子结构密切相关,即可以通过调节晶体结构和电子结构来提高其本征活性.例如,可以改变金属-氧键的强度、氧空位浓度等来调变电催化活性.在碳基材料中掺杂杂原子可以改变碳的电荷密度分布,从而实现对电催...  相似文献   

13.
金属-空气电池具备诸多优势,譬如绿色环保、能量转化率高、启动快速、能量密度高、使用寿命和干态存储时间长等.与燃料电池相比,金属-空气电池结构简单,放电电压平稳,成本低,但依然存在一些制约发展的问题,如阴极催化剂.阴极催化剂在金属-空气电池中发挥催化氧还原反应(oxygen reduction reaction, ORR)和析氧反应(oxygen evolution reac-tion, OER)的关键作用.铂及其合金常用作 ORR的单功能催化剂,而钌和铱等是目前 OER催化效率最高的,但 ORR活性很低,因此需要开发出一种廉价而又具备双功能催化作用的催化剂.单异原子掺杂的碳基催化剂的研究集中在 ORR催化性能上,而多异原子共掺碳最近有研究表明具有双催化氧的性质,如氮磷共掺碳.在这些氮磷共掺的碳架中,氮磷共掺物起着 OER催化作用,掺氮物为 ORR催化的活性位点,而掺磷物起着强化作用.异原子掺杂负载的钴基催化剂(如掺氮还原氧化石墨烯载 Co3O4)是近年来双功能催化剂研究的另一个热点.钴基催化剂有着催化 ORR和 OER的多价价态,然而其本身导电性能差,这一缺陷可通过杂化石墨化碳来弥补,石墨化碳有着优良的导电性能.据我们所知,目前仍没有关于氮磷共掺碳负载的 Co3O4双催化氧的研究.我们合成了氮磷共掺碳(NPC)负载的 Co3O4(Co3O4/NPC),并首次探索了其氧还原和析氧性能. Co3O4/NPC合成分两步进行.首先通过三聚氰胺与植酸之间的酯化或缩聚覆盖在导电炭黑颗粒表面,在保护气氛下焙烧得到 NPC,然后经溶剂热反应以及空气中氧化合成 Co3O4/NPC.催化剂的性能综合考虑了催化活性和稳定性两方面.采用线性扫描伏安法评估了 OER和 ORR的催化活性.对于 OER, Co3O4/NPC的起始电势是0.54 V (以饱和甘汞电极为参比电极),在0.80 V时电流密度达到21.95 mA/cm2,均优于 Co3O4/C和 NPC. Co3O4/NPC的高效 OER催化可归因于氮磷共掺物与 Co3O4之间的协同作用.对于 ORR, Co3O4/NPC的催化效率与商用 Pt/C相近,它们的扩散极限电流密度分别为–4.49和–4.76 mA/cm2(E =–0.80 V).在 ORR过程中, Co3O4起到主要的催化作用.采用计时电流(电流-时间)法评估了催化剂的稳定性.经6 h测定,对于 OER, Co3O4/NPC剩46%电流;而对于 ORR,剩95%电流.整体而言, Co3O4/NPC在 OER和 ORR中都表现出高的催化效率以及良好的稳定性.  相似文献   

14.
《中国化学快报》2022,33(8):3752-3756
Hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) have been considered as two critical processes in the field of electrocatalytic water-splitting for hydrogen production and fuel cells. However, the sluggish reaction kinetics of HER and ORR required efficient electrocatalyst such as Pt to promote such process. Transition metal phosphides (TMPs) exhibit great potential to replace noble metal electrocatalysts to accelerate HER and ORR due to their high activity and easy availability. Herein, a highly-efficient bifunctional CoP electrocatalyst for HER and ORR, featuring a unique core-shell structure decorated on nitrogen-doped carbon matrix was designed and constructed via etching a cobalt-based zeolitic imidazolate framework (ZIF-67) with phytic acid (PA) followed by pyrolysis treatment (PA-ZIF-67–900). Experimental results revealed that the pure-phase single-crystalline CoP exhibited outstanding electrocatalytic performance in HER and ORR, superior to Co(PO3)2 in PA-ZIF-67–700, hybrid phase of Co(PO3)2 and CoP in PA-ZIF-67–800 and Co2P-doped CoP in PA-ZIF-67–1000. To reach the current density of 10 mA/cm2 the as-synthesized CoP required an overpotential of 120 mV for HER in 1 mol/L KOH and half-wave potential of 0.85 V in O2-saturated 0.1 mol/L KOH. This work present new clue for construction of efficient and bifunctional electrocatalyst in the field of energy conversion and storage  相似文献   

15.
《Journal of Energy Chemistry》2017,26(6):1223-1230
Noble-metal-free hydrogen/oxygen evolution reaction(HER/OER) electrocatalysts, especially bifunctional electrocatalysts, are essential for overall water splitting, but their performance is impeded by many factors like poor electrical conductivity. Herein, we fabricated cobalt phosphide(Co P) nanoparticles embedded in P and N co-doped carbon(PNC) matrix(Co P@PNC) to fully realize the high activity of Co P by maximizing its conductivity. Simply a carbonization coupled phosphidation approach was utilized where Co ions and organic ligands of Co-MOF were transferred into Co P and P and N co-doped carbon. The synthesized material shows an ideal electrical conductivity, excellent HER(overpotential of-84 m V and-120 m V @10 m A cm~(-2) in acidic and alkaline medias, respectively) and OER(overpotential of 330 m V@10 m A cm~(-2) in alkaline media) performances. Further, Co P@PNC acts as a superior catalyst for both anode and cathode to catalyze overall water splitting and only requires an voltage of 1.52 V to deliver a current density of 10 m A cm~(-2), superior to the noble-metal catalysts system(Pt/C//IrO_2) and the reported noble-metal-free bifunctional electrocatalysts.  相似文献   

16.
Metal–organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a “strain modulation” approach has been applied through the use of surface‐mounted NiFe‐MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm?2 at an overpotential of only ≈210 mV. It demonstrates operational long‐term stability even at a high current density of 500 mA cm?2 and exhibits the so far narrowest “overpotential window” ΔEORR‐OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts.  相似文献   

17.
Metal–organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a “strain modulation” approach has been applied through the use of surface-mounted NiFe-MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm−2 at an overpotential of only ≈210 mV. It demonstrates operational long-term stability even at a high current density of 500 mA cm−2 and exhibits the so far narrowest “overpotential window” ΔEORR-OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts.  相似文献   

18.
The development of high-performance non-precious metal-based robust bifunctional electrocatalyst for both hydrogen evolution reaction(HER) and oxygen evolution reactions(OER) in alkaline media is essential for the electrochemical overall water splitting technologies. Herein, we demonstrate that the HER/OER performance of Co Se2 can be significantly enhanced by tuning the 3d-orbital electron filling degree through Mo doping. Both density functional theory(DFT) calculations and experime...  相似文献   

19.
The development of high-efficiency bifunctional electrocatalysts toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline surroundings is essential and challenging for the large-scale generation of clean hydrogen. Herein, a novel self-assembled two-dimensional (2 D) NiO/CeO2 heterostructure (HS) consisting of NiO and CeO2 nanocrystals is prepared through a facile two-step approach, and utilized as an enhanced bifunctional electrocatalyst for the HER and OER under alkaline conditions. It is concluded that this 2 D NiO/CeO2 HS, rich in oxygen vacancies, demonstrates attractive electrocatalytic properties for both the HER and OER in 1 m KOH, including low onset overpotential (η1), η10 and Tafel slope, excellent durability, as well as large active surface area. Therefore, the self-assembled 2 D NiO/CeO2 HS is believed to be an efficient bifunctional electrocatalyst toward the HER and OER.  相似文献   

20.
《Journal of Energy Chemistry》2017,26(6):1196-1202
The large-scale synthesis of efficient nonprecious bifunctional electrocatalysts for overall water splitting is a great challenge for future renewable energy conversion systems. Herein, Ni_2P nanosheet arrays directly grown on three-dimensional(3 D) Ni foam(Ni P/NF) are fabricated by hydrothermal treatment of metallic Ni foam with H_2O_2 solution and subsequent phosphidation with NaH_2PO_2. The Ni P/NF as electrocatalyst exhibits superior activities for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER). Most importantly, employing both as the cathode and anode for an alkaline water electrolyzer, Ni P/NF only requires a cell voltage of 1.63 V to reach a current density of 10 mV cm~(-2), together with stronger durability. Preliminary catalytic information suggests that the tailored 3 D superstructure and integrated electrode configurations afford improved active sties and enhanced electron/mass transfer,responding for the outstanding activity and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号