首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium ion batteries(SIBs)are very promising for large-scale energy storage in virtue of its high energy density,abundant sodium resources and low environmental impact,etc.However,it is still a big challenge to develop high-performance and durable cathode materials for SIBs.Among different candidate materials,Na_3V_2(PO_4)_3has attracted great attentions due to its high theoretical capacity(117 mAh/g),stable framework structure and excellent ionic conductivity.However,Na_3V_2(PO_4)_3delivers inferior rate capability and cycling stability due to its poor electronic conductivity.In this work,free-standing Na_3V_2(PO_4)_3/carbon nanofiber membranes are synthesized by an electrospinning-sintering route.The sample could deliver excellent cycling capability with specific capacity of 112 mAh/g at 1 C after 250cycles and ultrahigh rate capability with 76.9 mAh/g even at 100 C,which is superior to many state-ofthe-art SIB cathode materials.This can be attributed to the hierarchically distributed Na_3V_2(PO_4)_3crystals in carbon nanofiber network,which possesses outstanding electronic/ionic conductivity and thus leads to an ultrahigh rate capability.  相似文献   

2.
功率密度高、倍率性能优异和循环性能好等特性使得超级电容器在储能领域显示了巨大的应用前景。尽管二维层状材料剥离形成的纳米片层不仅可为电化学反应提供独特的纳米级反应空间,而且由其组装的层状纳米电极材料具有化学和结构上的氧化还原可逆性及纳米片层水平方向上离子或电子快速传输通道。但是,纳米片层组装电极材料在纳米片层垂直方向上离子或电子传输存在障碍,对于超级电容器功率密度和能量密度的提高及实现快速能量储存非常不利。因此,如何通过改善离子或电子的快速传输,实现超级电容器大功率密度下的高能量密度是超级电容器电极材料发展的方向之一。本文主要综述了二维层状材料剥离成纳米片层,纳米片层孔洞化策略及组装孔洞化材料在超级电容器电极材料中的应用。纳米层孔洞化技术是改善层状电极材料在纳米片层垂直方向离子或电子传输的有效手段,为实现高比电容下的高倍率性能超级电容器电极材料制备提供了方法学。最后,对开发大功率密度下的高能量密度超级电容器电极材料提出了展望。  相似文献   

3.
The looming global energy crisis and ever-increasing energy demands have catalyzed the development of renewable energy storage systems. In this regard, supercapacitors (SCs) have attracted widespread attention because of their advantageous attributes such as high power density, excellent cycle stability, and environmental friendliness. However, SCs exhibit low energy density and it is important to optimize electrode materials to improve the overall performance of these devices. Among the various electrode materials available, spinel nickel cobaltate (NiCo2O4) is particularly interesting because of its excellent theoretical capacitance. Based on the understanding that the performances of the electrode materials strongly depend on their morphologies and structures, in this study, we successfully synthesized NiCo2O4 nanosheets on Ni foam via a simple hydrothermal route followed by calcination. The structures and morphologies of the as-synthesized products were characterized by X-ray diffraction, scanning electron microscopy, and Brunauer-Emmett-Teller (BET) surface area analysis, and the results showed that they were uniformly distributed on the Ni foam support. The surface chemical states of the elements in the samples were identified by X-ray photoelectron spectroscopy. The as-synthesized NiCo2O4 products were then tested as cathode materials for supercapacitors in a traditional three-electrode system. The electrochemical performances of the NiCo2O4 electrode materials were studied and the area capacitance was found to be 1.26 C·cm-2 at a current density of 1 mA·cm-2. Furthermore, outstanding cycling stability with 97.6% retention of the initial discharge capacitance after 10000 cycles and excellent rate performance (67.5% capacitance retention with the current density from 1 to 14 mA·cm-2) were achieved. It was found that the Ni foam supporting the NiCo2O4 nanosheets increased the conductivity of the electrode materials. However, it is worth noting that the contribution of nickel foam to the areal capacitance of the electrode materials was almost zero during the charge and discharge processes. To further investigate the practical application of the as-synthesized NiCo2O4 nanosheets-based electrode, a device was assembled with the as-prepared samples as the positive electrode and active carbon (AC) as the negative electrode. The assembled supercapacitor showed energy densities of 0.14 and 0.09 Wh·cm-3 at 1.56 and 4.5 W·cm-3, respectively. Furthermore, it was able to maintain 95% of its initial specific capacitance after 10000 cycles. The excellent electrochemical performance of the NiCo2O4 nanosheets could be ascribed to their unique spatial structure composed of interconnected ultrathin nanosheets, which facilitated electron transportation and ion penetration, suggesting their potential applications as electrode materials for high performance supercapacitors. The present synthetic route can be extended to other ternary transition metal oxides/sulfides for future energy storage devices and systems.  相似文献   

4.
谢超  洪国辉  赵丽娜  杨伟强  王继库 《应用化学》2019,36(12):1422-1429
超级电容器因其具有较高的循环稳定性和较好的能量密度而成为储能器件中的研究热点,其电极材料及制备方法是决定超级电容器电化学性能的关键因素。 本文以聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物(P123)为软模板,通过一步原位聚合法成功地制备了石墨烯/聚吡咯纳米纤维(GR/PPy NF)复合超级电容器电极材料。 通过X射线衍射(XRD),X射线光电子能谱(XPS)、透射电子显微镜(TEM)和傅里叶变换红外光谱仪(FT-IR)等对复合材料的结构和形态进行了系统的表征。 利用电化学方法对GR/PPy NF复合电极材料的电化学性能进行了系统的分析。 结果表明,在电流密度0.5 A/g下,纳米复合材料的比电容量高达969.5 F/g,在充放电600圈之后,仍可保留初始比电容的88%,展示了良好的电容性能及循环稳定性。 GR/PPy NF制备简单,性能优异,是一种很有前途的能量转换/存储材料。  相似文献   

5.
The key to the development of sodium ion battery is materials with a high rate capacity and cycle stability. Conducting coating is an efficient approach to improve electrochemical performance. As a case study, the Na_3V_2(PO_4)_3@PEDOT composite was prepared through an in-situ self-decorated conducting polymer route without further calcination. The Na_3V_2(PO_4)_3 electrode with a 7%poly(3,4-ethylenedioxythiophene)(PEDOT) coating can deliver an initial reversible capacity of 100 mA h g~(-1) at 1 cycle, and 82%capacity retention over 200 cycles. The results also show that the Na_3V_2(PO_4)_3 electrode without and with a thick PEDOT coating exhibits poor electrochemical performance, indicating that an appropriate coating layer is important for improving electronic conductivity and regulating Na-ion insertion. Therefore, this work offers possibility to promote the electrochemical performance of poor-conducting materials in sodium-ion batteries using an in-situ self-decorated conducting polymer.  相似文献   

6.
Biomass-derived porous carbons show great potential as electrode materials for supercapacitors due to the environmental friendliness. However, most of the carbonaceous electrode materials suffer from low specific capaci-tance and rate capacity because of the poor porosity. Here, we reported a simple and effective approach to prepare micro/nano-hierarchical structured carbon materials derived from rice husk by NaOH-KOH molten salt co-activation. The as-prepared activated carbons exhibit high porosity and suitable pore size distributions for more electrolyte ion adsorption, which are all beneficial for achieving remarkable electrochemical performances, such as high specific capacitance(194.6 F/g), excellent rate capability(retention of 85.9%) and outstanding cycling stability. Thus, the above biomass-derived carbon materials with high porosity and micro/nano structures obtained by co-activation method offered a new insight into novel electrode material for the use in energy storage systems with high energy density and excellent rate performance.  相似文献   

7.
《中国化学快报》2020,31(7):1986-1990
Biomass-derived porous carbon with developed pore structure is critical to achieving high performance electrode materials. In this work, we report a grape-based honeycomb-like porous carbon (GHPC) prepared by KOH activation and carbonization, followed by N-doping (NGHPC). The obtained NGHPC exhibits a unique honeycomb-like structure with hierarchically interconnected micro/mesopores, and high specific surface area of 1268 m2/g. As a supercapacitor electrode, the NGPHC electrode exhibits a remarkable specific capacitance of 275 F/g at 0.5 A/g in a three-electrode cell. Moreover, the NGHPC//NGHPC symmetric supercapacitor displays a high energy density of 12.6 Wh/kg, and excellent cycling stability of approximately 95.2% capacitance retention after 5000 cycles at 5 A/g. The excellent electrochemical performance of NGHPC is ascribed to its high specific surface area, honeycomb-like structure and high-content of pyrodinic-N (36.29%). It is believed that grape-based carbon materials show great potential as advanced electrode materials for supercapacitors.  相似文献   

8.
Reasonably designing the structure of composite materials and effectively increasing electroactive sites of electrode materials are considered as the promising approaches to enhance the electrochemical performance for supercapacitors. Herein, a double-layer layered double hydroxide nanosheet array grown on Ni foams is constructed through a facile two-step hydrothermal method. The as-prepared double-layer electrode materials including Ni, Co, and Mn elements possess large surface area and porosity; thus, it can increase the contact between electrolytes and the electrode materials, which leads to an increase in electroactive sites and high electrochemical performance. The double-layer electrode shows a high capacitance performance (2950 F/g at 1 A/g) and superior cycling stability (79% retention after 10,000 cycles at 10 A/g). In addition, the asymmetric NiCo/NiMn-LDHs//AC device is fabricated and manifests good capacity with excellent cyclic stability of 82.2% after 10,000 cycles.  相似文献   

9.
石墨烯基纤维电容器的可控制备及应用   总被引:1,自引:1,他引:0  
聂肖威  陈南  李静  曲良体 《应用化学》2016,33(11):1234-1244
超级电容器又名电化学电容器,是一种绿色储能器件。 超级电容器的研究,从根本上讲是寻找比表面积大且可以被充分利用的电极材料。 石墨烯作为sp2杂化碳质材料的基元单位,具有独特的二维结构和优异的物化特性,使得其在超级电容器领域具有巨大的应用潜力,其中石墨烯纤维超级电容器受到了研究工作者越来越广泛的关注。 本文通过对一维石墨烯纤维的自组装以及与制备材料的共组装来作为超级电容器的电极材料,对其可控制备进行了系统的归纳和总结,可控构建独特的电极材料,使其性能得以优化,组装出高性能的超级电容器,并对相关领域的发展趋势做了展望。  相似文献   

10.
Flexible asymmetric supercapacitors are more appealing in flexible electronics because of high power density, wide cell voltage, and higher energy density than symmetric supercapacitors in aqueous electrolyte. In virtues of excellent conductivity, rich porous structure and interconnected honeycomb structure, three dimensional graphene aerogels show great potential as electrode in asymmetric supercapacitors. However, graphene aerogels are rarely used in flexible asymmetric supercapacitors because of easily re-stacking of graphene sheets, resulting in low electrochemical activity. Herein, flower-like hierarchical Mn3O4 and carbon nanohorns are incorporated into three dimensional graphene aerogels to restrain the stack of graphene sheets, and are applied as the positive and negative electrode for asymmetric supercapacitors devices, respectively. Besides, a strong chemical coupling between Mn3O4 and graphene via the C-O-Mn linkage is constructed and can provide a good electron-transport pathway during cycles. Consequently, the asymmetric supercapacitor device shows high rate cycle stability (87.8 % after 5000 cycles) and achieves a high energy density of 17.4 μWh cm−2 with power density of 14.1 mW cm−2 (156.7 mW cm−3) at 1.4 V.  相似文献   

11.
《中国化学快报》2020,31(9):2177-2188
In the past few years, the increasing energy consumption of traditional fossil fuels has posed a huge threat to human health. It is very imperious to develop the sustainable and renewable energy storage and conversion devices with low cost and environment friendly features. Hybrid supercapacitors are emerging as one of the promising energy devices with high power density, fast charge-discharge process and excellent cycle stability. However, morphology and structure of the electrode materials exert serious effect on their electrochemical performances. In this review, we summarized recent progresses in transition metal oxide based electrode materials for supercapacitors. Different synthesis routes and electrochemical performances of electrode materials and storage mechanisms of supercapacitor devices have been presented in details. The future developing trends of supercapacitor based on metal oxide electrode materials are also proposed.  相似文献   

12.
Fiber supercapacitors are promising energy storage devices for potential application in wearable and miniaturized portable electronics, which currently suffer from difficulties in achieving high capacitance and energy density synchronously owing to the limited specific surface area of the electrode materials and material incompatibility between the two electrodes. Herein, a strategy is developed for the manufacture of coaxial asymmetric fiber supercapacitors by wrapping a core of PVA-KOH gel electrolyte-coated Ni(OH)2@NiCo2O4/CNT fibers with MoS2@Fe2O3/CNT paper. The as-prepared coaxial fiber asymmetric supercapacitors exhibit a specific capacitance of 373 mF cm−2 (at a current density of 2 mA cm−2) and energy density of 0.13 mW h cm−2 (at a power density of 3.2 mW cm−2), and also show good rate capability, long cycle life, and excellent flexibility. This work provides the possibility for the practical application of fiber supercapacitors in wearable and portable energy storage equipment.  相似文献   

13.
李宁  陈涛 《应用化学》2018,35(3):259-271
随着电子产品向着智能化、微型化和便携化的方向发展,亟需发展与之匹配的高效柔性储能器件。 超级电容器由于功率密度高、循环寿命长、安全无污染、易于实现其柔性化等特点,近年来引起人们的广泛关注。 石墨烯材料具有极高的比表面积、优异的电化学性能和良好的机械稳定性,被广泛作为柔性全固态超级电容器的电极材料。 本文简要介绍了石墨烯电极材料的制备方法,并总结了其在柔性全固态超级电容器中的最新研究进展,探讨了其发展前景和面临的挑战。  相似文献   

14.
超级电容器最大的优点是具有优良的脉冲充放电性能和快速充放电性能,同时具有循环寿命长、工作温度范围宽、安全无污染等特性,但能量密度较低. 本文对超级电容器的工作原理、发展状况、缺陷所在和改进方法进行了简要介绍,以本课题组在高比能超级电容器方面的研究工作为主线,结合近几年的文献报道,重点阐述了超级电容器能量密度的提升策略. 主要围绕以下三个方面开展了工作:1)通过将电极材料尺寸纳米化来提高传统电极材料的比容量或开发其他高比容量的电极材料;2)发展具有高电压窗口的离子液体电解液,或利用不同材料在不同电位区间的电容特性构筑不对称电容器,从而提高超级电容器的电压窗口;3)将超级电容器和锂离子电池进行“内部交叉”构筑兼具高能量密度和高功率密度的锂离子混合电容器. 最后,对超级电容器的发展进行了展望.  相似文献   

15.
《中国化学快报》2023,34(3):107593
Rational design of electrode meterials with unique core-shell nanostructures is of great significance for improving the electrochemical performance of supercapacitors. In this work, we prepare several CuCo2O4 @Ni-Co-S composite electrodes by a controllable hydrothermal and electrodeposition route. One-dimensional nanowires can shorten the ions transport path, while two-dimensional nanosheets expose many active sites. This enables three-dimensional structured composite with high electrochemical activity. The as-prepared heterostructured materials show a specific of 1048 C/g at 1 A/g. It still maintains 75.6% of initial capacity after 20000 cycles at 10 A/g. The device delivers an energy density of 79.2 Wh/kg when the power density reaches to 2280 W/kg. Moreover, it possesses an excellent mechanical stability after repeated folding at different angles  相似文献   

16.
超级电容器作为一种新型的能源存储装置,由于其较高的功率密度、优良的充放电特性、超长的循环寿命,使其在移动电源,新能源汽车等众多领域具有非常广泛的应用前景.3D石墨烯基气凝胶具有多孔结构、大的比表面积、高的导电率、优异的机械性能和电子传输能力,它一直被认为是超级电容器的理想电极材料.本文综述了3D石墨烯基气凝胶的制备方法...  相似文献   

17.
The development of high-performance supercapacitor electrode materials is imperative to alleviate the ongoing energy crisis. Numerous transition metals (oxides) have been studied as electrode materials for supercapacitors owing to their low cost, environmental-friendliness, and excellent electrochemical performance. Among the developed binary transition metal oxides, manganese cobalt oxides typically show high theoretical capacitance and stable electrochemical performance, and are widely used in the electrode materials of supercapacitors. However, the poor conductivity and active material utilization of manganese cobalt oxide-based electrode materials limit their potential capacitance application. Cotton is mainly composed of organic carbon-containing materials, which can be transformed to carbon fibers after calcination. The resultant carbonaceous material exhibits a large specific surface area and good conductivity. Such advantages could potentially suppress the negative effects caused by the poor conductivity and small specific surface area of manganese cobalt oxides, thereby improving the electrochemical performance. Herein, we firstly deposited manganese cobalt oxides on cotton by a simple hydrothermal method, yielding a composite of manganese cobalt oxides and carbon fibers via subsequent calcination, to improve the electrochemical performance of the electrode material. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), thermogravimetric analysis (TGA), and electrochemical characterizations were used to investigate the physical, chemical, and electrochemical properties of the prepared samples. The fabricated manganese cobalt oxides in the composite were uniformly dispersed on the carbon fiber surface, which increased the contact between the interface of the electrode material and electrolyte, and enhanced electrode material utilization. The electrode material was confirmed to have well contacted with the electrolyte during a contact angle test. Hence, a pseudo-capacitance reaction completely occurred on the manganese cobalt oxide material. Moreover, the addition of carbon fibers reduced the resistance of the material, resulting in excellent capacitive performance. The capacitance of the prepared composite was 854 F∙g-1 at a current density of 2 A∙g-1. The capacitance was maintained at 72.3% after 2000 cycles at a current density of 2 A∙g-1. These results indicate that the manganese cobalt oxide and carbon fiber composite is a promising electrode material for high-performance supercapacitors. The findings presented herein provide a strategy for coupling with carbon materials to enhance the performance of supercapacitor electrode materials based on manganese cobalt oxides. Thus, novel insights into the design of high-performance supercapacitors for energy management are provided.  相似文献   

18.
It is possible to achieve high energy density and power density simultaneously for asymmetric supercapacitors by using pseudocapacitive materials with abundant ion intercalation/de-intercalation sites on the surface. Herein, a positive electrode based on feather-like MnO2 anchored on the activated carbon cloth is prepared, in which oxygen-enriched MnO2 nanorods with a radial sheet-like structure (OMO@AC) further form via electrochemical oxidation. Because of the large contact area with electrolyte and abundant oxidation functional groups on its surface, the OMO@AC displays excellent capacitance of 3,160 mF/cm2 at 1 mA/cm2. For the nitrogen-doped active carbon negative electrode, the capacitance is up to 1,875 mF/cm2 at 4 mA/cm2 due to the increase in disorder and defect on the carbon surface by N-doping. Furthermore, we verify the good electrochemical activity on the OMO@AC electrode surface by first-principles calculations and confirm the good matching degree between the positive and negative electrodes by CV testes. The aqueous oxygen-enriched MnO2// nitrogen-doped active carbon asymmetric supercapacitor exhibits an ultrahigh energy density of 8.723 mWh/cm3 at a power density of 14.248 mW/cm3 and display excellent cycle stability maintaining 95.5% after 10,000 cycles. The facile synthesis method and excellent performance provide a feasible way for the preparation of high-performance electrode materials for energy storage devices.  相似文献   

19.
In recent years, development of high-performance supercapacitor electrode materials has stimulated a great deal of scientific research. The electrochemical performance of a supercapacitor strongly depends on its material structures. Herein, we report a simple strategy for high-performance supercapacitors by building pseudocapacitive CuS nanospheres with nanoporous structures, nanosized walls(10 nm) and relatively large specific surface area of 65 m~2/g. This electrode demonstrates excellent electrochemical performance including a maximum specific capacitance of 814 F/g at 1 A/g, significant rate capability of 42% capacitance retention at an ultrafast rate of 50 A/g, and outstanding long-term cycling stability at various current densities. The remarkable electrochemical performance of as-prepared nanoporous CuS nanospheres electrode has been attributed to its unique structures that plays a key role in providing short ion and electron diffusion pathways, facilitated ion transport and more active sites for electrochemical reactions. This work sheds a new light on the metal sulfides design philosophy, and demonstrates that nanoporous CuS nanospheres electrode is a promising candidate for application in high-performance supercapacitors.  相似文献   

20.
《中国化学快报》2021,32(11):3553-3557
Although transition metal phospho-sulfides deliver outstanding electrochemical performance, complex preparation methods hindered their further development. Herein, we report a facile one-step electrodeposition approach to deposit interconnected nanowalls-like nickel cobalt phospho-sulfide (Ni-Co-P-S) nanosheets onto the surface of carbon cloth. The thin Ni-Co-P-S nanosheets with multi-components and synergetic effects delivered rich active sites, further enhancing reversible capacitance. Therefore, the as-prepared Ni-Co-P-S electrode materials exhibit excellent electrochemical performance in a three-electrode system, showcasing a high specific capacitance of 2744 F/g at 4 A/g. The full supercapacitors based on Ni-Co-P-S as positive electrode and active carbon as negative electrode showcase a high specific capacitance of 110.9 F/g at 1 A/g, impressive energy density of 39.4 Wh/kg at a power density of 797.5 W/kg in terms of excellent cycling stability (91.87% retention after 10,000 cycles). This simple electrode position strategy for synthesizing Ni-Co-P-S can be extended to prepare electrode materials for various sustainable electrochemical energy storage/conversion technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号