首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pancreatic cancer is a highly fatal disease that is becoming an increasingly leading cause of cancer-related deaths. In clinic, the most effective approach to treat pancreatic cancers is the combination treatment of several chemotherapeutic drugs, including fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX), but this approach is not adequate to manage patients due to their severe toxic side effects. Herein, we proposed light-activated monomethyl auristatin E (MMAE) prodrug nanoparticles for combinational photo-chemotherapy and optimized its applications for pancreatic cancer treatment. The photosensitizer (Ce6) and chemotherapeutic drug (MMAE) were conjugated through caspase-3-specific cleavable peptide (KGDEVD). The resulting CDM efficiently promoted the reactive oxygen species (ROS) under visible light irradiation and thereby induced caspase-3 overexpression in pacreatic cancers, which subsequently released the MMAE from the system. Importantly, MMAE released from CDM further amplified the activation of CDM into MMAE by inducing extensive apoptotic cell death in tumor microenvironment for treatment of tumor cells in deep in the tumor tissues as far visible light cannot reach. In addition, CDM formed prodrug nanoparticles via intermolecular π-π stacking and hydrophobic interactions, allowing durable and reliable treatment by preventing fast leakage from the pancreatic cancers via the lymphatic vessels. The CDM directly (intratumoral) injected into pancreatic cancers in orthotopic models through an invasive approach significantly delayed the tumor progression by combinational photo-chemotherapy with less toxic side effects. This study offers a promising and alternative approach for safe and more effective pancreatic cancer treatment via prodrug nanoparticles that combine photodynamic therapy and chemotherapy.  相似文献   

2.
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease which confers to patients a poor prognosis at short term. PDAC is the fourth leading cause of death among cancers in the Western world. The rate of new cases of pancreatic cancer (incidence) is 10 per 100,000 but present a 5-year survival of less than 10%, highlighting the poor prognosis of this pathology. Furthermore, 90% of advanced PDAC tumor present KRAS mutations impacting in several oncogenic signaling pathways, many of them associated with cell proliferation and tumor progression. Different combinations of chemotherapeutic agents have been tested over the years without an improvement of significance in its treatment. PDAC remains as one the more challenging biomedical topics thus far. The lack of a proper early diagnosis, the notable mortality statistics and the poor outcome with the available therapies urge the entire scientific community to find novel approaches against PDAC with real improvements in patients’ survival and life quality. Natural compounds have played an important role in the process of discovery and development of new drugs. Among them, terpenoids, such as sesquiterpene lactones, stand out due to their biological activities and pharmacological potential as antitumor agents. In this review, we will describe the sesquiterpene lactones with in vitro and in vivo activity against pancreatic tumor cells. We will also discuss the mechanism of action of the compounds as well as the signaling pathways associated with their activity.  相似文献   

3.
Inhibition of the EGFR signaling pathway is one of the attractive therapeutic targets for pancreatic cancer as recent studies demonstrated that EGFR is over‐expressed in pancreatic cancer. In this article we have demonstrated the design of targeted drug delivery system containing Bovine Serum Albumin (BSA) microspheres as delivery vehicle, gemcitabine as anticancer drug and anti‐EGFR (epidermal growth factor receptor) monoclonal antibody as targeting agent. The conjugated BSA microspheres were characterized by several physico‐chemical techniques such as scanning electron microscope, optical microscopy, fluorescent microscopy etc. Administration of these BSA microspheres containing gemcitabine and anti‐EGFR (BSA‐Gem‐EGFR) shows significant inhibition of pancreatic cancer cells (AsPC1) compared to the cells treated with only BSA microspheres, BSA with gemcitabine (BSA‐Gem), and free gemcitabine. This strategy could be used as a generalized approach for the treatment of pancreatic cancer along with other cancers which overexpress EGFR on cell surface. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
5.
制备了2种两亲性生物降解嵌段共聚物聚乙二醇-聚(乳酸-碳酸酯),进而与紫杉醇和叶酸共价键合,形成高分子-紫杉醇键合物和高分子-叶酸键合物,将它们共组装成复合纳米胶束,直径约50 nm,含紫杉醇27 wt%,含叶酸1.4 wt%.培养了人卵巢癌SKOV3细胞,采用四氮唑(MTT)比色法、流式细胞术(FCM)证明了市售紫杉醇(Taxol)、紫杉醇胶束(M(PTX))及叶酸靶向紫杉醇胶束(FA-M(PTX))在10μg/mL浓度下对SKOV3细胞生长有明显抑制作用,并且M(PTX)和FA-M(PTX)优于Taxol.构建了皮下卵巢癌balb/c荷瘤裸鼠动物模型,考察了Taxol,M(PTX)和FA-M(PTX)对肿瘤生长的抑制能力.在20 mg/kg的剂量下,体外测量的肿瘤体积、9天观察的瘤体重量以及动物的生存期数据都表明,Taxol,M(PTX)和FA-M(PTX)三者都能抑制SKOV3肿瘤的生长,抑制能力的顺序为Taxol相似文献   

6.
Pancreatic cancer is a notorious disease with a poor prognosis and low survival rates, which is due to limited advances in understanding of the molecular mechanism and inadequate development of effective treatment options over the decades. In previous studies, we demonstrated that a novel soluble protein named pancreatic adenocarcinoma up-regulated factor (PAUF) acts on tumor and immune cells and plays an important role in metastasis and progression of pancreatic cancer. Here we show that PAUF promotes adhesiveness of pancreatic cancer cells to various extracellular matrix (ECM). Our results further support a positive correlation of activation and expression of focal adhesion kinase (FAK), a key player in tumor cell metastasis and survival, with PAUF expression. PAUF-mediated adhesiveness was significantly attenuated upon blockade of the FAK pathway. Moreover, PAUF appeared to enhance resistance of pancreatic cancer cells to anoikis via modulation of FAK. Our results suggest that PAUF-mediated FAK activation plays an important role in pancreatic cancer progression.  相似文献   

7.
正常组织和胰腺癌组织中差异表达蛋白的鉴定   总被引:2,自引:2,他引:0  
采用双向凝胶电泳和生物质谱技术, 对12对胰腺癌组织和癌旁组织样品、3个胰腺良性疾病样品、3个正常胰腺组织样品的蛋白质进行了分离和鉴定, 获得了重复性较好的双向凝胶电泳图谱; 鉴定了胰腺癌和癌旁组织的差异表达蛋白质, 发现了30个差异表达蛋白质; 应用MALDI-TOF-MS/MS技术对差异表达蛋白质进行鉴定, 共有24个蛋白质得到鉴定, 其中15个蛋白质在胰腺癌组织中表达上调, 9个蛋白质表达下调. 这些蛋白质与胰腺癌的发生相关, 可能成为胰腺癌的分子标志物和药物治疗的靶蛋白.  相似文献   

8.
《中国化学快报》2023,34(7):108023
Accumulating evidence in recent years indicates that DNA methylation (5-methyl-2′-deoxycytidine, 5-mdC) and hydroxymethylation (5-hydroxymethyl-2′-deoxycytidine, 5-hmdC) have been implicated in various biological processes, and the aberrations of these DNA cytosine modifications is tightly associated with cancer. N6-methyl-2′-deoxyadenosine (m6dA), as a newly discovered epigenetic modification in genome of mammals, has been demonstrated to play vital regulatory roles in tumorigenesis. However, the content information of m6dA in human tumor tissues is still limited and pan-cancer analysis of these DNA epigenetic modifications is lacked. Herein, we developed a sensitive and robust stable isotope-diluted hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) method for accurate quantification of m6dA, 5-mdC and 5-hmdC in genomic DNA from 82 pairs of human tumor tissues and matched tumor-adjacent normal tissues. The types of tumors included esophagus cancer, lung cancer, breast cancer, liver cancer, pancreatic cancer, gastric cancer, stromal tumor and colorectal cancer. Compared to the normal tissues, we revealed the level of m6dA was increased in tumor tissues of esophagus cancer, lung cancer and liver cancer, whereas the level of m6dA was diminished in tumor tissues of pancreatic cancer and gastric cancer; while the contents of 5-mdC and 5-hmdC exhibited significant decrease in tumor tissues of most types of cancer. It is worth noting that we revealed, for the first time, the content of genomic m6dA in pancreatic cancer, stromal tumor and colorectal cancer. The significant changes of these DNA epigenetic modifications indicate they may serve as indicators of cancers. In addition, this study will benefit for better understanding of the regulatory roles of these DNA epigenetic modifications in cancers.  相似文献   

9.
Pancreatic cancer is a malignant tumor with the worst prognosis among all cancers. At the time of diagnosis, surgical cure is no longer a feasible option for most patients, thus early detection of pancreatic cancer is crucial for its treatment. Metabolomics is a powerful new analytical approach to detect the metabolome of cells, tissue, or biofluids. Here, we report the application of 1H nuclear magnetic resonance (NMR) combined with principal components analysis to discriminate pancreatic cancer patients from healthy controls based on metabolomic profiling of the serum. The metabolic analysis revealed significant lower of 3-hydroxybutyrate, 3-hydroxyisovalerate, lactate, and trimethylamine-N-oxide as well as significant higher level of isoleucine, triglyceride, leucine, and creatinine in the serum from pancreatic cancer patients compared to that of healthy controls. Our data demonstrate that the subtle differences in metabolite profiles in serum of pancreatic cancer patients and that of healthy subjects as a result of physiological and pathological variations could be identified by NMR-based metabolomics and exploited as metabolic markers for the early detection of pancreatic cancer.  相似文献   

10.
Pancreatic adenocarcinoma is by far the deadliest type of cancer. Inflammation is one of the important risk factors in tumor development. However, it is not yet clear whether deterioration in pancreatic cancer patients is related to inflammation, as well as the underlying mechanism. In addition, JNK is abnormally activated in pancreatic cancer cells and the JNK inhibitor C66 reduces the inflammatory microenvironment in the tumor. Therefore, the aim of this study was to evaluate the role of C66 in the proliferation and migration of pancreatic cancer. Our results showed that various inflammatory cytokines, such as IL-1β, IL-6, IL-8, and IL-15, were more expressed in pancreatic cancer than in the matching normal tissue. Furthermore, C66, a curcumin analogue with good anti-inflammatory activity, inhibited the proliferation and migration of pancreatic cancer cells in a dose-dependent manner, and effectively inhibited the expression of the above inflammatory factors. Our previous research demonstrated that C66 prevents the inflammatory response by targeting JNK. Therefore, in this study, JNK activity in pancreatic cancer cells was investigated, revealing that JNK was highly activated, and the treatment with C66 inhibited the phosphorylation of JNK. Next, shJNK was used to knockdown JNK expression in pancreatic cancer cells to further confirm the role of JNK in the proliferation and migration of this tumor, as well as in the inflammatory tumor microenvironment (TME). The results demonstrated that JNK knockdown could significantly inhibit the proliferation and migration of pancreatic cancer. Moreover, the low JNK expression in pancreatic cancer cells significantly inhibited the expression of various inflammatory factors. These results indicated that C66 inhibited the progression of pancreatic cancer through the inhibition of JNK-mediated inflammation.  相似文献   

11.
The successful treatment of most cancers depends on early detection. Tumor mRNA as a specific marker provides new avenues to monitor tumor progression in the early stages and assesses response to treatment. However, single tumor mRNA testing usually yields "false positive" results because cancer is associated with multiple tumor mRNA. It is indispensable to develop simple and effective approaches for the detection of multiple tumor mRNA. In this study, we used a combination of tumor-specific mRNA markers to avoid the inherent limitations associated with the single-marker technique. A gold nanoparticle (AuNP) was assembled with a bi-molecular beacon (bi-MB), and termed AuNP/bi-MB, which simultaneously targeted to two types of tumor mRNA in breast cancer cells. This imaging agent could prevent effectively false positive results and provide comprehensive and dependable information for the early detection of cancer. It would be beneficial to identify the stage of tumor progression and assess treatment decisions with the real-time detection of the relative expression levels of tumor mRNA in cancer cells. This strategy would offer an appealing approach toward the early detection of cancer by using multianalysis of tumor mRNA.  相似文献   

12.
Described are the syntheses of five decapeptides that are C-2-symmetrical derivatives of the natural product pentapeptide sansalvamide A. Derivatives were made using a succinct convergent synthesis. These analogues share no structural homology to current cancer drugs, are cytotoxic at levels on par with existing drugs treating cancers, and demonstrate selectivity for drug-resistant pancreatic cancer cell lines over noncancerous cell lines. These molecules are excellent chemotherapeutic leads in the search for new anticancer agents.  相似文献   

13.
5-Fluorouracil (5-FU) is used widely as an anticancer drug to treat solid cancers, such as colon, breast, rectal, and pancreatic cancers, although its clinical application is limited because 5-FU has gastrointestinal and hematological toxicity. Many groups are searching for prodrugs with functions that are tumor selective in their delivery and can be activated to improve the clinical utility of 5-FU as an important cancer chemotherapeutic agent. UV and ionizing radiation can cause chemical reactions in a localized area of the body, and these have been applied in the development of site-specific drug activation and sensitization. In this review, we describe recent progress in the development of novel 5-FU prodrugs that are activated site specifically by UV light and ionizing radiation in the tumor microenvironment. We also discuss the chemical mechanisms underlying this activation.  相似文献   

14.
15.
The urea cycle (UC) removes the excess nitrogen and ammonia generated by nitrogen-containing compound composites or protein breakdown in the human body. Research has shown that changes in UC enzymes are not only related to tumorigenesis and tumor development but also associated with poor survival in hepatocellular, breast, and colorectal cancers (CRC), etc. Cytoplasmic ornithine, the intermediate product of the urea cycle, is a specific substrate for ornithine decarboxylase (ODC, also known as ODC1) for the production of putrescine and is required for tumor growth. Polyamines (spermidine, spermine, and their precursor putrescine) play central roles in more than half of the steps of colorectal tumorigenesis. Given the close connection between polyamines and cancer, the regulation of polyamine metabolic pathways has attracted attention regarding the mechanisms of action of chemical drugs used to prevent CRC, as the drug most widely used for treating type 2 diabetes (T2D), metformin (Met) exhibits antitumor activity against a variety of cancer cells, with a vaguely defined mechanism. In addition, the influence of metformin on the UC and putrescine generation in colorectal cancer has remained unclear. In our study, we investigated the effect of metformin on the UC and putrescine generation of CRC in vivo and in vitro and elucidated the underlying mechanisms. In nude mice bearing HCT116 tumor xenografts, the administration of metformin inhibited tumor growth without affecting body weight. In addition, metformin treatment increased the expression of monophosphate (AMP)-activated protein kinase (AMPK) and p53 in both HCT116 xenografts and colorectal cancer cell lines and decreased the expression of the urea cycle enzymes, including carbamoyl phosphate synthase 1 (CPS1), arginase 1 (ARG1), ornithine trans-carbamylase (OTC), and ODC. The putrescine levels in both HCT116 xenografts and HCT116 cells decreased after metformin treatment. These results demonstrate that metformin inhibited CRC cell proliferation via activating AMPK/p53 and that there was an association between metformin, urea cycle inhibition and a reduction in putrescine generation.  相似文献   

16.
Pancreatic carcinoma still represents one of the most lethal malignant diseases in the world although some progress has been made in treating the disease in the past decades. Current multi-agent treatment options have improved the overall survival of patients, however, more effective treatment strategies are still needed. In this paper we have characterized the anticancer potential of coumarin-palladium(II) complex against pancreatic carcinoma cells. Cells viability, colony formation and migratory potential of pancreatic carcinoma cells were assessed in vitro, followed by evaluation of apoptosis induction and in vivo testing on zebrafish. Presented results showed remarkable reduction in pancreatic carcinoma cells growth both in vitro and in vivo, being effective at micromolar concentrations (0.5 μM). Treatments induced apoptosis, increased BAX/BCL-2 ratio and suppressed the expression of SOX9 and SOX18, genes shown to be significantly up-regulated in pancreatic ductal adenocarcinoma. Importantly, treatments of the zebrafish-pancreatic adenocarcinoma xenografts resulted in significant reduction in tumor mass, without provoking any adverse toxic effects including hepatotoxicity. Presented results indicate the great potential of the tested compound and the perspective of its further development towards pancreatic cancer therapy.  相似文献   

17.
杨太忠  罗萍  李艳丽  华瑞  尹沛源  许国旺 《色谱》2014,32(2):126-132
胃癌是一种高发的恶性肿瘤,是癌症相关死亡的第二大病因。早期筛查是提高患者生存率的有效手段,但目前临床上尚缺乏实现胃癌无创筛检的可靠标志物。本研究采用了基于液相色谱-质谱联用的拟靶向代谢组学方法分析了20例胃癌患者及40例正常人血清代谢组,以期发现新的潜在代谢标志物。代谢组数据的主成分分析和偏最小二乘法数据分析结果显示,胃癌患者与健康人群的血清代谢组存在明显的差异,结合非参数检验进一步筛选并定性出57个差异代谢物。其中二氢胆固醇经验证组样本验证,具有成为胃癌代谢标志物的潜力。本研究在发现胃癌的潜在代谢标志物的同时,也为胃癌患者代谢分型提供了重要的科学依据。  相似文献   

18.
基于量子点(QD)独特的光学成像特性, 采用化学合成法制备了透明质酸(HA)修饰的水溶性纳米量子点(HA-QD), 并将其应用于特异性受体CD44的识别研究中. 体外细胞实验结果证实, 在透明质酸受体的介导下, 该纳米复合物可使小鼠肺腺癌细胞LA795显示特异性的荧光成像. 本研究为建立针对透明质酸受体的肿瘤活体检测及研究肿瘤的发生发展提供了重要的纳米靶向荧光探针.  相似文献   

19.
Transition metals offer many possibilities in developing potent chemotherapeutic agents. They are endowed with a variety of oxidation states, allowing for the selection of their coordination numbers and geometries via the choice of proper ligands, leading to the tuning of their final biological properties. We report here on the synthesis, physico-chemical characterization, and solution behavior of two gold(III) pyrrolidinedithiocarbamates (PDT), namely [AuIIIBr2(PDT)] and [AuIIICl2(PDT)]. We found that the bromide derivative was more effective than the chloride one in inducing cell death for several cancer cell lines. [AuIIIBr2(PDT)] elicited oxidative stress with effects on the permeability transition pore, a mitochondrial channel whose opening leads to cell death. More efficient antineoplastic strategies are required for the widespread burden that is cancer. In line with this, our results indicate that [AuIIIBr2(PDT)] is a promising antineoplastic agent that targets cellular components with crucial functions for the survival of tumor cells.  相似文献   

20.
Reactive oxygen species (ROS) are critical for many cellular functions, and dysregulation of ROS involves the development of multiple types of tumors, including pancreatic cancer. However, ROS have been grouped into a single biochemical entity for a long time, and the specific roles of certain types of ROS in tumor cells (e.g., pancreatic ductal adenocarcinoma (PDAC)) have not been systematically investigated. In this work, a highly sensitive and accurate mass spectrometry-based method was applied to study PDAC cells of humans and of genetically modified animals. The results show that the oncogenic KRAS mutation promotes the accumulation of hydrogen peroxide (H2O2) rather than superoxide or hydroxyl radicals in pancreatic cancer cells. We further identified that the enriched H2O2 modifies cellular metabolites and promotes the survival of pancreatic cancer cells. These findings highlight the specific roles of H2O2 in pancreatic cancer development, which may provide new directions for pancreatic cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号