首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
应用高频红外分析仪测定海洋沉积物的总碳含量。于坩埚中预置纯铁屑0.2g,准确称取沉积物样品50.0 mg置于坩埚中,再加入纯铁屑0.2g,使其与样品充分混匀,再加入钨粒1.6g,使其均匀覆盖在样品上面。加入的铁屑与钨粒起了助熔剂的作用。以下按仪器工作条件进行通氧燃烧和测定。按所提出的分析条件测定了两种标准物质(GBW 07364和GBW 07366)中的总碳量,测定结果与认定值相符,测定值的相对标准偏差(n=10)分别为2.3%,1.8%。该方法的检出限(3s)为0.000 4%。应用此方法测定了18种海洋沉积物样品中的总碳量,并用元素分析仪对这些样品进行了校对试验,结果表明两方法的测定结果基本相符。  相似文献   

2.
建立高频燃烧红外吸收光谱法测定铀金属中碳、硫杂质的含量。陶瓷坩埚于1 300℃下烘烧2~4 h,助熔剂于300℃下烘烤1~2 h,样品采用硝酸进行加热清洗;加入次序依次为0.3 g铁助熔剂、样品、1.5 g钨助熔剂;积分时间为40 s。碳、硫杂质的质量浓度分别在0~93,0~14μg/g范围内与吸收峰面积呈良好的线性关系,线性相关系数分别为0.999 8和0.999 6,方法检出限均为1μg/g。样品加标回收率为93.2%~107.0%,测定结果的相对标准偏差为3.9%~5.4%(n=6)。该方法高效、准确、稳定,适用于铀金属中碳、硫杂质含量测定。  相似文献   

3.
将经用丙酮超声清洗并干燥的电解锰样品(0.5~0.8g)置于预先在1 250℃灼烧处理并冷却至室温的瓷坩埚中,加入钨锡1.000g和纯铁0.400g作为助熔剂,充分混匀后置于碳硫测定仪中,按自动模式以CO2形态用红外光谱法测定样品的碳量。对同一样品(wC=0.003 8%)按方法做精密度试验,测定值的相对标准偏差(n=8)为5.3%。分析了已知含碳0.006%的电解锰样品,测得回收率(n=6)为102%。  相似文献   

4.
建立高频感应燃烧–红外吸收测定镍钛铌记忆合金中碳含量的方法。对称样质量、助熔剂种类选择及加入量、空白坩埚的处理、仪器分析参数进行优化后,确定实验方案:称样质量0.5 g,助熔剂选用1.0 g钨锡粒,坩埚使用前于1 100℃中灼烧4 h后自然冷却,保存于干燥器中,仪器分析高频功率设定为1.54 k W。在选定的实验条件下,以钢铁标准样品绘制单点校准曲线,以钛合金标准物质IARM 271A验证曲线准确性,建立了高频燃烧红外吸收测定镍钛铌记忆合金中碳含量的方法。采用该方法分别对记忆合金样品NiTiNb–59炉、NiTiNb–40炉中碳含量进行测定,测定结果的相对标准偏差分别为3.42%,2.76%(n=10),在两样品中分别加入Leco501–501–1~#及AR871碳标准样品进行回收试验,回收率在96%~106%之间。该方法精密度好,准确性高,可用于镍钛铌记忆合金中碳含量的测定。  相似文献   

5.
应用X射线荧光光谱法(XRFS)测定了萤石中氟化钙、二氧化硅、氧化铝和全铁的含量。采用熔融法制备样块,称取粒径小于0.125mm的试样1.000g于铂坩埚中与硝酸钾0.2g、碳酸锂1.0g及无水四硼酸锂5.0g混合均匀,加入150g.L-1溴化锂溶液3滴,于1 050℃熔融20min,所得熔块用XRFS对上述4种组分进行测定。对含有还原性物质的试样采用先在铂坩埚中加入无水四硼酸锂熔融,使熔剂均匀粘涂于坩埚内壁的下部和底部,冷却后再用硝酸钾及碳酸锂按程序在低温预氧化后升至高温对样品进行熔融,所得熔块用于XRFS分析,用标准样品按试验方法制备工作曲线。应用此法分析了4个萤石样品,上述组分的测定值与化学法的测定值相符。  相似文献   

6.
应用高频红外碳硫分析仪对石墨矿中的固定碳含量进行测定。选用HNO3溶液(1+2)预处理样品,于420℃灼烧4 h,样品称取质量为0.050 0 g,加入纯铁助熔剂0.4 g、纯钨助熔剂1.5 g,分析时间为40 s。用国家标准物质验证了该方法的精密度和准确度,标准物质测定结果的相对标准偏差小于2.0%(n=7),相对误差均小于3%。该方法检出限为0.017%。  相似文献   

7.
采用高频燃烧红外吸收光谱法测定三水型铝土矿中的硫含量。采用750℃灼烧20min处理铝土矿样品,加入纯铁1.4g,钨锡助熔剂1.5g作为混合助熔剂。硫的线性范围为0.31%~1.0%,加标回收率在99.1%~101%之间,测定值的相对标准偏差(n=7)在0.50%~0.85%之间。  相似文献   

8.
将铅精矿或铜精矿样品30.00g平铺于预先铺有20g二氧化硅的方舟中,于试金炉中在750℃焙烧脱硫60min。将脱硫后的样品混合物转移至黏土坩埚中,加入50g碳酸钠,200g氧化铅,20g四硼酸钠作为助熔剂,4.0g淀粉作为还原剂,搅匀后在表面覆盖约5mm厚的氯化钠,在试金炉中于1 100℃进行熔融(一次试金),获得30~40g的铅扣。将铅扣在850℃进行灰吹,得到金银合粒。将一次试金的熔渣和灰皿粉碎后置于一次试金用的坩埚中,加入40g碳酸钠,20g四硼酸钠,25g二氧化硅及4.0g淀粉,搅匀并在表面覆盖约5mm厚的氯化钠后,再进行火试金和灰吹处理,得到第二颗金银合粒。两次所得金银合粒合并后,用热硝酸(1+7)溶液进行分金。用重量法或原子吸收光谱法测得金量,用差量法得到银量(用电感耦合等离子体原子发射光谱法测定铜、铅、铋、砷和锑等杂质的含量)。回收试验得到金的回收率为99.2%~100%,银的回收率为100%,测定值的相对标准偏差(n=7)为0.37%~2.8%(金)和0.28%~2.4%(银)。  相似文献   

9.
样品0.100 0g,与混合熔剂(mNa_2CO_3∶mNa_2O_2为1∶2)2.0g混匀后于750℃熔融。冷却后,用2.0%(质量分数)碳酸钠溶液50mL加热溶出熔块。过滤后,滤液(其中含有以钨酸盐存在的钨)加水定容至250mL。分取25.0mL加入2.5%(质量分数)酒石酸溶液5mL,2min后加入盐酸(1+9)溶液50mL,加水稀释至100mL。将过滤后所得不溶物(其中含碳酸钡沉淀)与硝酸15mL煮沸3min,加水定容至100mL,静置,分取上清液10.0mL,加水稀释至100mL。采用电感耦合等离子体原子发射光谱法分别测定上述两溶液中钨及钡的含量。用所提出方法测定了国家标准物质(GBW 07284和GBW 07811)中三氧化钨和氧化钡的含量,测定值与认定值相符,其相对标准偏差(n=6)分别为1.6%,0.24%。  相似文献   

10.
应用熔融制样-X射线荧光光谱法测定了直接还原铁中主次元素的含量。样品置于铂金坩埚中,以四硼酸锂和偏硼酸锂为熔剂于1 050℃熔融20min,将熔化的样品倒入铂金模具中,所制得的片样用于X射线荧光光谱分析。以铁矿石标准物质GBW 07221等25种标准物质制作校准曲线,以固定理论α影响系数法校正基体效应。方法用于实际样品的分析,所得结果与其他方法测定值相符。测定值的相对标准偏差(n=10)在0.31%~16%之间。  相似文献   

11.
应用X射线荧光光谱法测定了锌精矿中主次量组分(包括锌、硫、铁、硅、铅、铜、砷、银、镉、锡及锑)。锌精矿样品(0.6g)与6.3g四硼酸锂和3.2g硝酸锂置于铂-金坩埚中拌匀,先在500℃随即升至700℃灼烧10min,使样品中的硫离子预氧化为硫酸盐。硝酸锂与四硼酸锂生成四硼酸锂和偏硼酸锂混合物熔剂,在1 030℃熔融样品10min,将熔化的样品倒入样模中,冷却后脱模所得熔块用于X射线荧光光谱分析。对在预氧化及熔融过程中由于样品组成变化及质量的增加所造成的基体干扰,采用基于Sherman方程的可变理论α影响系数法进行校正。在所测定的元素中,锌和硫的校准曲线范围依次为27%~62%和10%~35%,两者的标准偏差均小于0.2%。应用所提出的方法分析了2个CRM(GBW 07168和SRM 113b),所得测定值与认定值一致。  相似文献   

12.
称取10.00 g样品放于马弗炉中700℃条件下焙烧后,加入约60 mL王水,盖上表面皿于低温电热板(1000 W)溶解40 min,加入5 mL动物胶(20 g/L),搅拌均匀后加入等体积的水,抽滤,滤液定溶至500 mL,分液后以10 ng/mL的Rh为内标建立了王水溶样-电感耦合等离子体质谱(ICP-MS)法快速测定地质样品中金的分析方法。方法适用于检测0.1~10μg/g品位的矿石样品,对国家一级标准物质GBW07209、GBW07808、GBW07809、GBW07300进行12次测定,其相对标准偏差RSD均小于5%,相对误差RE均小于2%。方法具有简单快速等优势,在实际应用中得到满意的结果。  相似文献   

13.
称取10.00g样品放于马弗炉中700℃条件下焙烧后,加入约60mL王水,盖上表面皿于低温电热板(1 000W)溶解40min,加入5mL动物胶(20g/L),搅拌均匀后加入等体积的水,抽滤,滤液定溶至500mL,分液后以10ng/mL的Rh为内标建立了王水溶样-电感耦合等离子体质谱(ICP-MS)法快速测定地质样品中金的分析方法。方法适用于检测0.1~10μg/g品位的矿石样品,对国家一级标准物质GBW07209、GBW07808、GBW07809、GBW07300进行12次测定,其相对标准偏差RSD均小于5%,相对误差RE均小于2%。方法具有简单快速等优势,在实际应用中得到满意的结果。  相似文献   

14.
称取10.00g样品放于马弗炉中700℃条件下焙烧后,加入约60mL王水,盖上表面皿于低温电热板(1 000W)溶解40min,加入5mL动物胶(20g/L),搅拌均匀后加入等体积的水,抽滤,滤液定溶至500mL,分液后以10ng/mL的Rh为内标建立了王水溶样-电感耦合等离子体质谱(ICP-MS)法快速测定地质样品中金的分析方法。方法适用于检测0.1~10μg/g品位的矿石样品,对国家一级标准物质GBW07209、GBW07808、GBW07809、GBW07300进行12次测定,其相对标准偏差RSD均小于5%,相对误差RE均小于2%。方法具有简单快速等优势,在实际应用中得到满意的结果。  相似文献   

15.
测定了6种不同矿样中的钼含量。取矿样样品(0.200 0~0.500 0g)在聚四氟乙烯烧杯中,先加入氢氟酸5mL和硝酸5mL,于280℃加热蒸干,再加硫酸5mL,于330℃加热至冒白烟。冷却,将溶液和沉淀一起移至50mL容量瓶中,加水至刻度,摇匀。分取其上清液,按硫氰酸盐光度法测定其钼含量。钼的线性范围为0.02~4.0mg·L-1,方法的检出限(3s)为0.12mg·L-1。应用所提出方法测定了4种矿石标准物质(GBW 07238,GBW 07241,GBW 07282,GBW07164)中钼的含量,测定值与认定值相符,测定值的相对标准偏差(n=11)在2.6%~6.2%之间。  相似文献   

16.
采用HIR-944B红外碳硫分析仪快速测定碳酸锶中的硫。对测定条件如助熔剂加入量、样品加入方式、参考物质的选择进行了探讨。确定的助熔剂最佳配比为0.5 g纯铁+0.3 g锡粒+1.5 g钨粒。样品平铺于混合助熔剂的中间层,最上部覆盖薄铝片压紧,以有证石灰石为参考物质。该方法测定结果的相对标准偏差为1.85%、2.12%(n=5),加标回收率为96%、98%。  相似文献   

17.
利用高频红外碳硫仪,建立盐酸预处理-红外吸收法测定地球化学样品中有机碳含量的分析方法。对样品的称取量、助熔剂的添加量、盐酸溶液的体积分数等条件进行了优化。高频红外碳硫分析仪专用陶瓷坩埚经过1 200℃高温处理后,能够有效降低空白值。优化后的分析条件为:确定称样量为50 mg,使用体积分数为40%的盐酸溶液,选择0.5 g纯铁屑和1.5 g钨粒作为助熔剂;对土壤和水系沉积物等不同类型的地球化学样品进行6次测定,选择国家一级标准物质作为实验对象,其检测结果的相对误差为0.23%~3.63%,相对标准偏差为0.592%~4.551%,符合《多目标区域地球化学调查规范》规定,满足分析测试要求。该方法测定结果准确、稳定,流程短、操作简单,适用于地球化学样品中有机碳含量的测定。  相似文献   

18.
建立了熔融制样-X射线荧光光谱法(XRFS)同时测定白云石中氧化钙、氧化镁、二氧化硅、三氧化二铝、三氧化二铁、二氧化钛、氧化钾、氧化钠、五氧化二磷含量的方法。称取混合熔剂(由质量比67∶33的四硼酸锂和偏硼酸锂混合而成) 6.000 0 g,先将一半熔剂倒入铂-金坩埚中,然后加入碘化铵0.2 g和干燥好的样品0.900 0 g,混匀后,再将剩余的混合熔剂覆盖在表面,在1 000℃熔融12 min,得到的玻璃样片供XRFS分析。以标准物质、光谱纯试剂和基准试剂混合熔融制备校准用标准样品系列,以经验α系数法进行基体校正和谱线重叠效应校正。结果显示:校准曲线的相关系数为0.993 8~1.000,检出限为9.31~129.1μg·g~(-1);对实际样品进行单天内重复测定11次和11天的重复测定,测定值的相对标准偏差(RSD)不大于6.0%和10%;对11个平行制备的样品进行单天和11天连续测定(每天1个样品),测定值的RSD不大于7.0%和8.0%;方法用于分析标准物质和实际样品,测定值和认定值或按GB/T 3286-2012所得测定值的误差均在GB/T 3286-2012的允许差范围内。  相似文献   

19.
高频燃烧-红外吸收法测定石墨中的固定碳含量   总被引:1,自引:0,他引:1  
称取0.05 g试样在520℃高温下灼烧30 min,除去石墨中的有机碳,然后用硝酸(1+1)处理,除去碳酸盐,加3 g碳硫分析专用混合助熔剂,在高频红外碳硫仪上测定固定碳含量.与间接定碳法和非水滴定容量法进行对比试验,测定结果吻合较好.经国家一级标准物质(GBW03118、GBW03119和GBW03120)和石墨矿样品验证,方法的准确度为-0.11%~0.04%,精密度为0.52%~1.81%(RSD%,n=12),符合DZ/T0130-2016《地质矿产实验室测试质量管理规范(岩石矿物样品化学成分分析)》的要求.  相似文献   

20.
取水产品样品0.500 0 g,加入硝酸5 mL、水2 mL、30%(质量分数)过氧化氢溶液1 mL,按微波消解程序进行消解,将消解液于100℃蒸发至1~2 mL,用水定容至25 mL。采用电感耦合等离子体质谱法测定上述溶液中铬、铜、锌、砷、镉、铅的含量。各元素测定值的相对标准偏差(n=6)在1.2%~5.9%之间,回收率在96.6%~102%之间。按上述方法分析标准物质GBW 10023、GBW 10024、GBW 10050,FAPAS质控基准物质TET012RM以及质控样品T07225QC,各元素测定值与认定值一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号