首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a novel family of macrocyclic molecules,cucurbit[n]urils(CB[n]s) have emerged as promising building blocks of supramolecular nano drug delivery systems(SNDDS) in recent years.Direct encapsulation of amphiphilic guests by CB[6] and CB[7] can modulate their amphiphilicity,resulting in formation of supramolecular amphiphiles that self-assemble into supramolecular nanoparticles for drug delivery.Additionally,CB[n]'s host-guest chemistry on the surface of mesoporous nanoparticles makes CB[n] an ideal blocking agent to control drug release from delivery vehicles.These SNDDS possess intrinsic stimuli responsiveness towards external guest or host,which can further incorporate re s ponsiveness to a variety of other stimuli including pH,thermal,redox,photo and enzyme,to realize multiple stimuli-responsive drug release.Moreover,the recent breakthrough in direct functionalization of CB[n]s has provided a feasible method for preparing superior CB[6] and CB[7] derivatives that can be employed to build multifunctional SNDDS with unoccupied macrocycles located on surface,which could be decorated with various functional "tags" through host-guest chemistry.In this review,we summarized the recent progress of CB[6] and CB[7] based SNDDS through formation of supramolecular amphiphiles,supramolecular nanovalves as well as supramolecularly tailorable surface,which we hope to further promote the development of CB[n]s family as building blocks for advanced SNDDS.  相似文献   

2.
Employing bis(p-sulfonatocalix[4]arenes) (bisSC4A) and N',N'hexamethylenebis(1-methyl-4,4'-bipyridinium) (HBV(4+)) as monomer building blocks, the assembly morphologies can be modulated by cucurbit[n]uril (CB[n]) (n = 7, 8), achieving the interesting topological conversion from cyclic oligomers to linear polymers. The binary supramolecular assembly fabricated by HBV(4+) and bisSC4A units, forms an oligomeric structure, which was characterized by NMR spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), dynamic light scattering (DLS), isothermal titration calorimetry (ITC), and gel permeation chromatography (GPC) experiments. The ternary supramolecular polymer participated by CB[8] is constructed on the basis of host-guest interactions by bisSC4A and the [2]pseudorotaxane HBV(4+)@CB[8], which is characterized by means of AFM, DLS, NMR spectroscopy, thermogravimetric analysis (TGA), UV/Vis spectroscopy, and elemental analysis. CB[n] plays vital roles in rigidifying the conformation of HBV(4+), and reinforcing the host-guest inclusion of bisSC4A with HBV(4+), which prompts the formation of a linear polymer. Moreover, the CB[8]-participated ternary assembly could disassemble into the molecular loop HBV(2+)@CB[8] and free bisSC4A after reduction of HBV(4+) to HBV(2+), whereas the CB[7]-based assembly remained unchanged after the reduction. CB[8] not only controlled the topological conversion of the supramolecular assemblies, but also improved the redox-responsive assembly/disassembly property practically.  相似文献   

3.
《中国化学快报》2020,31(5):1235-1238
A supramolecular dimer of doxorubicin (DOX) was constructed via ternary host-guest interactions between cucurbit[8]uril (CB[8]) and tryptophan modified DOX (DOX-Trp, connected with an acid-labile bond) and we demonstrate for the first time that a supramolecular dimer of DOX can be formed upon homo-dimerization by CB[8], which may act as a stimuli pH-responsive, supramolecular DOX dimer prodrug system. This supramolecular DOX dimer transported DOX efficiently and selectively to cancer cells, thereby exhibiting significantly minimized cytotoxicity against noncancerous cells while maintaining effective cytotoxicity against cancer cells. Under this strategy, many other anticancer drugs could be chemically modified and loaded as a dimeric “ammunition” into CB[8] as supramolecular dimer prodrug systems (or a “jet fighter”) for improved cancer therapy.  相似文献   

4.
Pillar[n]arene, as a new kind of macrocyclic host molecule, is a cyclic oligomer, which has a unique rigid structure with a hydrophobic cavity and can interact with many size-matched guest molecules. In this review, the molecular recognition, self-assembly and applications of the pillar[n]arenes in the past two years were described. On the basis of previous scientific research, a variety of pillar[n]arene-based supramolecular systems responsive to specific external stimuli such as pH, redox, gas, light, etc. has been constructed. Pillar[n]arenes have exhibited great potential in constructing these fantastic supramolecular systems based on host-guest recognition, including nanomaterials, controllable drug delivery, transmembrane channels, chemosensors and catalytic entities. These supramolecular systems have a wide range of applications in the material, biology, detection and catalysis field, but their applications are not limited to these fields.  相似文献   

5.
Diarylethene (DTE) has been widely used in fluorescence probes, molecular logic gates, optical data-storage devices owing to the excellent photochromic property, while constructing high-performance photochromic DTE in aqueous media remains a big challenge. Herein we present several host-guest systems formed between cucurbit[n]uril (CB[n], n=7, 8, 10) and two water-soluble DTE derivatives 1 and 2 . It was found that host-guest interactions not only affect the photophysical properties of photochromic guests, but also make great differences on the photoreaction process. Different host-guest binding behaviors also lead to different effects on the photochromic properties of guests. In the presence of CB[n], both 1 and 2 showed enhanced emission and higher fluorescence quenching ratio at photostationary state. Besides, CB[10] ⋅1 exhibited faster response rate in cyclization reaction and better photofatigue resistance than free 1 in aqueous solution, while the supramolecular assembly of (CB[8])n ⋅ ( 2 )n showed slower response rate in both directions of the reversible photoreaction. Besides, the photofatigue resistance of 2 can be greatly improved through binding with CB[7]. Our results suggest that host-guest interactions could be an efficient way to improve photochromic properties of DTE in aqueous solution.  相似文献   

6.
The assembly behavior of aryl/alkyl imidazolium ionic liquid salts in aqueous solution has been investigated. These salts undergo self-assembly into one-dimensional stacks via hydrophobic and π-π interactions upon increasing concentration, which led to a substantial increase in the solution viscosity in water. Addition of the macrocyclic host molecules cucurbit[n]urils (CB[n]) were found to effectively alter the supramolecular assemblies, as evidenced from the dramatic increase (by CB[7]) and decrease (by CB[8]) in solution viscosity and aggregation size in water, on account of the different binding stoichiometries, 1:1 complexation with CB[7] and 2:1 complexation with CB[8]. Furthermore, the aggregate architectures were controllably modified by competitive guests for the CB[n] hosts. This complex supramolecular systems approach has tremendous implications in the fields of molecular sensor design, nonlinear viscosity modification, and controlled release of target molecules from a defined supramolecular scaffold in water.  相似文献   

7.
《中国化学快报》2022,33(10):4563-4566
Nano-drug delivery systems with multiple stimulus-responsive capabilities have superior response performance and efficient drug release. Nevertheless, it is sophisticated to construct multiple stimulus-responsive systems where the two or more functional groups need to be introduced simultaneously. Xanthate, one functional group with pH and H2O2 stimulus responsiveness, has significant potential applications for building dual-responsive drug delivery system. Herein, we present a novel dual stimuli-responsive supramolecular drug delivery system by using sodium xanthate derivative (SXD) as guest molecule and quaternary ammonium capped pillar[5]arene (QAP5) as host molecule through host-guest interaction on the basis of electrostatic interaction. The amphiphile QAP5?SXD could self-assemble into vesicles to efficiently load the anti-cancer drug DOX. The experimental results showed that QAP5?SXD nanoparticles could achieve efficient drug delivery and controlled release in the tumor microenvironment. Cytotoxicity experiments proved that DOX@QAP5?SXD nanoparticles could significantly improve the anticancer efficiency of free DOX on cancer cells. The present study provides an efficient strategy to develop supramolecular nanocarriers with dual-responsiveness in one functional group for controlled drug release.  相似文献   

8.
A novel amphiphilic supramolecular polymer (ASP) with rigid linear main chain has been constructed by the co-assembly of a rigid amphiphilic monomer and cucurbit[8]uril (CB[8]) in water, driven by CB[8]-based host-guest interactions. The ASP could further self-assemble into well-defined architectures including nanotubes and 2D films, depending on its concentration. Moreover, pH-responsive behavior of the ASP was also observed.  相似文献   

9.
The success of exploiting cucurbit[n]uril (CB[n])-based molecular recognition in self-assembled systems has sparked a tremendous interest in polymer and materials chemistry. In this study, polymerization in the presence of host-guest complexes is applied as a modular synthetic approach toward a diverse set of CB[8]-based supramolecular hydrogels with desirable properties, such as mechanical strength, toughness, energy dissipation, self-healing, and shear-thinning. A range of vinyl monomers, including acrylamide-, acrylate-, and imidazolium-based hydrophilic monomers, could be easily incorporated as the polymer backbones, leading to a library of CB[8] hydrogel networks. This versatile strategy explores new horizons for the construction of supramolecular hydrogel networks and materials with emergent properties in wearable and self-healable electronic devices, sensors, and structural biomaterials. © 2017 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3105–3109  相似文献   

10.
Current drug delivery systems gain more functions with increased complexity. With the idea of less is more, we synthesized hexanoate-cucurbit[7]uril (CB[7]C5COONa) with multiple promising features for drug delivery. The hexanoate group integrates multiple functions. It endows CB[7]C5COONa extremely high solubility of over 600 mg mL−1 and well-defined pH-controlled release ability without sacrificing on the high binding affinity of CB[7] cavity. Based on the pH-controlled release ability, CB[7]C5COONa can be used for controlling the bioactivity of drug molecules. We anticipate that the strategy of function integration would be useful for the design of simple yet powerful drug delivery systems.  相似文献   

11.
With the biggest cavity in the cucurbit[n]urils (CB[n]s) family, CB[10] has shown its unique molecular recognition properties. This review gives a brief summary of the research progresses in the CB[10]-based chemistry, involving its purification and applications in fields such as molecular recognition and molecular assembly.  相似文献   

12.
Hydrogels are three-dimensional networked materials that are similar to soft biological tissues and have highly variable mechanical properties, making them increasingly important in a variety of biomedical and industrial applications. Herein we report the preparation of extremely high water content hydrogels (up to 99.7% water by weight) driven by strong host-guest complexation with cucurbit[8]uril (CB[8]). Cellulosic derivatives and commodity polymers such as poly(vinyl alcohol) were modified with strongly binding guests for CB[8] ternary complex formation (K(eq) = 10(12) M(-2)). When these polymers were mixed in the presence of CB[8], whereby the overall solid content was 90% cellulosic, a lightly colored, transparent hydrogel was formed instantaneously. The supramolecular nature of these hydrogels affords them with highly tunable mechanical properties, and the dynamics of the CB[8] ternary complex cross-links allows for rapid self-healing of the materials after damage caused by deformation. Moreover, these hydrogels display responsivity to a multitude of external stimuli, including temperature, chemical potential, and competing guests. These materials are easily processed, and the simplicity of their preparation, their availability from inexpensive renewable resources, and the tunability of their properties are distinguishing features for many important water-based applications.  相似文献   

13.
The unique pumpkin-shape macrocyclic structure with inherent cavities renders cucurbituril (CB) a type of versatile supramolecular container. On account of their good biocompatibility and low toxicity, the applications of CB to encapsulate drug molecules provide promising candidates and the pharmacological activities have been investigated currently. How to control over the uptake and release of the guest at will is significant for practical applications of drug delivery. The noncovalent nature of supramolecular interactions offers variety of options to control the release of guest molecules from CB under external stimuli, including pH, temperature, metal cations, competing guests, light, redox and so on. Moreover, CB containers are capable of assembling into higher ordered supramolecular structures such as polymers, nanoparticles, hydrogels, and colloids, which greatly enrich the scope of CB-type inclusion materials. Those results provide useful principles and guidelines for controlled release from supramolecular containers.  相似文献   

14.
瓜环[n](n=6~8)与盐酸丁咯地尔的相互作用   总被引:3,自引:0,他引:3  
利用1HNMR技术、电喷雾质谱、红外光谱及紫外吸收光谱等手段研究了瓜环[n](n=6~8)与盐酸丁咯地尔的相互作用.实验结果表明,盐酸丁咯地尔与3种瓜环具有不同的相互作用,主-客体配合物的作用模式随着瓜环大小的不同而各不相同.其中,瓜环[6]与盐酸丁咯地尔的相互作用非常弱,而瓜环[7]和瓜环[8]则都将盐酸丁咯地尔分子中的吡咯环及其相邻的2个碳全部包结进去,形成了包结比为1:1的对称包结配合物.通过紫外吸收光谱法计算得到瓜环[7]和瓜环[8]与盐酸丁咯地尔分子的包结常数在102~103L/mol范围内,说明瓜环对盐酸丁咯地尔具有潜在的药物缓释作用.  相似文献   

15.
ABSTRACT

Aqueous light-harvesting systems in hydrogels formed by specific noncovalent interactions exhibit both solution and solid-state performance. In this work, the copolymerisation of acrylamide (AM), 4-(1,2,2-triphenylvinyl) phenyl acrylate (vTPE), and guest units 1-benzyl-3vinylimidazolium (G) was carried out with initiator to form P(AM-vTPE-G). Then, supramolecular hydrogels were fabricated by dynamic host–guest interactions the guest unit and host molecule cucurbit[8]uril (CB[8]). The aggregated tetraphenylethylene (TPE) moieties in the polymer chains aggregate together, possessed high fluorescence enhancement during the cross-linking process. Meanwhile, emission characteristics of the obtained aqueous light-harvesting systems were further examined by using the donor (supramolecular hydrogel) and acceptor (Eosin Y disodium salt) system. The process provides a novel method for the production of fluorescence and self–healing supramolecular hydrogel with various potential applications.  相似文献   

16.
Pillar[n]arene-based amphiphiles,mainly including amphiphilic pillar[n]arenes and supra-amphiphilic pillar[n]arenes,have obtained considerable interests in recent years due to their fascinating chemical structures,various self-assembly behaviors,and widely applications.Thanks to the pillar-like frameworks and the rich host-guest recognitions of the cavities,these amphiphiles can be easily controlled to form dimensional and morphologic assemblies for multiple applications.Compared with traditional linear covalent amphiphiles,the introduction of host-guest recognitions facilitated the preparation and controllability of these supramolecular amphiphilic systems.Moreover,the host-guest recognitions endow the assemblies from pillar[n]arene-based amphiphiles with stimuli-responsive functions.In this mini-review,we summarized the chemical structures,self-assembly features,and the applications of pillar[n]arene-based amphiphiles.However,several research topics of pillar[n]arenebased amphiphiles can be further developed in the future,such as larger cavity amphiphilic pillar[n]arenes,co-assembly with 2 D materials and utilization of the host-guest interactions.  相似文献   

17.
We determined the values of Ka for a wide range of host-guest complexes of cucurbit[n]uril (CB[n]), where n = 6-8, using 1H NMR competition experiments referenced to absolute binding constants measured by UV/vis titration. We find that the larger homologues--CB[7] and CB[8]--individually maintain the size, shape, and functional group selectivity that typifies the recognition behavior of CB[6]. The cavity of CB[7] is found to effectively host trimethylsilyl groups. Remarkably, the values of Ka for the interaction of CB[7] with adamantane derivatives 22-24 exceeds 10(12) M(-1)! The high levels of selectivity observed for each CB[n] individually is also observed for the CB[n] family collectively. That is, the selectivities of CB[6], CB[7], and CB[8] toward a common guest can be remarkably large. For example, guests 1, 3, and 11 prefer CB[8] relative to CB[7] by factors greater than 10(7), 10(6), and 3000, respectively. Conversely, guests 23 and 24 prefer CB[7] relative to CB[8] by factors greater than 5100 and 990, respectively. The high levels of selectivity observed individually and collectively for the CB[n] family renders them prime components for the preparation of functional biomimetic self-sorting systems.  相似文献   

18.
The supramolecular crosslinking of polymer chains in water by specific, directional and dynamic non-covalent interactions has led to the development of novel supramolecular polymeric hydrogels. These aqueous polymeric networks constitute an interesting class of soft materials exhibiting attractive properties such as stimuli-responsiveness and self-healing arising from their dynamic behaviour and that are crucial for a wide variety of emerging applications. We present here a critical review summarising the formation of dynamic polymeric networks through specific non-covalent interactions, with a particular emphasis on those systems based on host-guest complex formation, as well as the characterisation of their physical characteristics. Aqueous supramolecular chemistry has unlocked a versatile toolbox for the design and fine-tuning of the material properties of these hydrogels (264 references).  相似文献   

19.
The transient self-assembly of molecules under the direction of a consumable fuel source is fundamental to biological processes such as cellular organization and motility. Such biomolecular assemblies exist in an out-of-equilibrium state, requiring continuous consumption of high energy molecules. At the same time, the creation of bioinspired supramolecular hydrogels has traditionally focused on associations occurring at the thermodynamic equilibrium state. Here, hydrogels are prepared from cucurbit[7]uril host–guest supramolecular interactions through transient physical crosslinking driven by the consumption of a reactive chemical fuel. Upon action from this fuel, the affinity and dynamics of CB[7]–guest recognition are altered. In this way, the lifetime of transient hydrogel formation and the dynamic modulus obtained are governed by fuel consumption, rather than being directed by equilibrium complex formation.  相似文献   

20.
The control over chemical reactivity and selectivity are always pursued. Using non-covalent interactions to achieve efficient and selective catalysis is an essential goal of supramolecular catalysis. Supramolecular catalysis based on cucurbit[n]urils (CB[n]s) possesses distinct characteristics for the unique structure of CB[n]s. CB[n]s are a family of pumpkin-shaped host molecules with various molecular sizes, rigid structures, electronegative portals and wealthy host-guest chemistry. Herein, we summarize the three major mechanisms of CB[n]s based supramolecular catalysis. Owing to the structural properties of CB[n]s, CB[n]s can serve as nanoreactors and steric hindrance to modulate the reactivity of substrates. They can also catalyze the reactions by modulating the reactivity of ionized intermediates. Recent progresses on the CB[n]s based supramolecular catalysis are introduced in this Minireview and the future development in this field is discussed. It is anticipated that this review provides insights into the mechanism of CB[n]s based supramolecular catalysis and may help scientists find new opportunities in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号