首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uniform particles of pure and silica-coated cholesterol   总被引:2,自引:0,他引:2  
Uniform crystalline colloidal cholesterol particles of narrow size distribution were obtained by precipitation. The method consisted of adding a miscible non-solvent (water) into cholesterol solutions of different alcohols and acetone, without any additives. The properties of the resulting particles depended in a sensitive way on the concentration of all reactants, temperature, pH, ionic strength, and aging time. The major observed effects were due to the solubility of cholesterol, which was strongly affected by the solvent mixture and temperature. Precipitation in 1-propanol/water system yielded stable dispersions of well-defined particles, which were used to evaluate the effects of different experimental parameters on their properties. Aging of stable dispersions resulted in multi-layered aggregation of the primary platelets, the degree and rate of which process was strongly affected by temperature. Finally, it was shown that the colloidal cholesterol particles could be coated with homogeneous silica layers in order to alter their surface characteristics.  相似文献   

2.
This paper presents a novel method for preparation of polymer-silica colloidal nanocomposites based on emulsion polymerization and subsequent sol-gel nanocoating process. The polystyrene latex particles bearing basic groups on their surfaces were successfully synthesized through emulsion polymerization using 4-vinylpyridine (4VP) as a functional comonomer and polyvinylpyrrolidone (PVP) as a surfactant. A series of poly(styrene-co-4-vinylpyridine)/SiO2 nanocomposite particles with smooth or rough core-shell morphology were obtained through the coating process. The poly(styrene-co-4-vinylpyridine) particles could be dissolved subsequently or simultaneously during the sol-gel coating process to form hollow particles. The effects of the amount of 4VP, PVP, NH(4)OH, and tetraethoxysilane (TEOS) on both the nanocomposite particles and hollow particles were investigated. Transmission electron microscopy showed that the morphology of the nanocomposite particles and hollow particles was strongly influenced by the initial feed of the comonomer 4VP and the coupling agent PVP. The conditions to obtain all hollow particles were also studied. Thermogravimetric analysis and energy dispersive X-ray spectroscopy analyses indicated that the interiors of hollow particles were not really "hollow".  相似文献   

3.
Quaternary ammonium salt, (3-acrylamidopropyl)-trimethylammonium chloride was used to synthesize nanohydrogel and composite particles such as inorganic–organic hybrid composites and hydrogel nanoparticles with magnetic properties utilizing a water-in-oil microemulsion system. The positively charged cationic monomer was chosen to promote silica hydrolysis and condensation to prepare silica-hydrogel nanocomposite particles with interesting morphologies. It was shown that highly monodisperse, completely charged nanohydrogel can be used to encapsulate ferrite particles. Furthermore, it was also confirmed that cationic nanohydrogel particles with variant morphology can be prepared by employing suitable silica precursor. Morphology, structure, properties, and size of nanocomposite materials were explored utilizing transmission electron microscopy, atomic force microscopy, and vibrating sample magnetometer.  相似文献   

4.
Colloidal FePt nanocrystals, 6 nm in diameter, were synthesized and then coated with silica (SiO2) shells. The silica shell thickness could be varied from 10 to 25 nm. As-made FePt@SiO2 nanocrystals have low magnetocrystalline anisotropy due to a compositionally disordered FePt core. When films of FePt@SiO2 particles are annealed under hydrogen at 650 degrees C or above, the FePt core transforms to the compositionally ordered L1(0) phase, and superparamagnetic blocking temperatures exceeding room temperature are obtained. The SiO2 shell prevents FePt coalescence at annealing temperatures up to approximately 850 degrees C. Annealing under air or nitrogen does not induce the FePt phase transition. The silica shell limits magnetic dipole coupling between the FePt nanocrystals; however, low temperature (5 K) and room temperature magnetization scans show slightly constricted hysteresis loops with coercivities that decrease systematically with decreased shell thickness, possibly resulting from differences in magnetic dipole coupling between particles.  相似文献   

5.
The development of a new temperature sensitive hydrogel particle having biodegradable crosslinkages, composed of poly(N-isopropylacrylamide)/dextran-allyl isocyanate (PNIPAAm/Dex-AI) was prepared through precipitation polymerization. Dex-AI was used as a precursor as well as a biodegradable crosslinker for forming the network particles. Characterization data showed that these PNIPAAm/Dex-AI hydrogel particles had an average hydration diameter around 1.0 mm and showed a dendrite-like heterogeneous morphology with two different porous microstructures. The hydrogel particles exhibited a transition temperature or lower critical solution temperature (LCST) at around 25.7 °C through differential scanning calorimetry (DSC) measurement or temperature dependence study of particles volume. The freeze-dried particles swelled quickly when socked in distilled water at room temperature and large amounts of water were stored within the network before reaching the stable swollen state.  相似文献   

6.
The surface properties of predominantly microporous, mesoporous, and nonporous alumina samples were studied and compared with samples modified by coating with a fixed amount of silica on their surfaces. The samples were characterized in terms of their specific surface areas, pore structure, and the chemistry of the surface, namely, surface acidity and surface OHs. An attempt was made to relate the activity toward cumene cracking with the chemistry as well as the predominant pore size. This study will hopefully reveal the role of the pore structure of alumina in determining its adsorption and catalytic activity and also the effect of doping with silica in modifying the surface properties of alumina.  相似文献   

7.
The diffusion behavior of core-shell latex particles with a liquid core of hexadecane and a solid polystyrene shell in water solution has been studied using the pulsed field gradient spin-echo (PFG-SE) NMR technique. The apparent diffusion coefficient and the root mean square displacement of oil were strongly dependent on the diffusion time Delta. With increasing diffusion time, the obstructing effect from the particle wall caused a decrease in the apparent oil diffusion coefficient. The root mean square displacement of oil inside the particle core was constant for all diffusion times and was used for the calculation of the particle radius. The volume fraction dependence of the apparent diffusion coefficient was found to be roughly consistent with the hard-sphere model. The diffraction pattern in the echo decay predicted from the q-space formalism for molecules diffusing inside a spherical cavity was almost completely smeared out due to polydispersity and wall relaxation effects. It was observed that 10-20% (w/w) of the particle shell consisted of hexadecane. This fact imparted a slow component to the echo decay, since the exchange time between oil in the shell and oil in the cavity was slow, which further contributed to the smearing out of the diffraction pattern. It was concluded that by using the core-shell concept very good signal-to-noise is obtained in the PFG-SE experiment, thus making possible studies of translational properties of colloidal particles in different environments to an extent that previously has been very difficult to perform.  相似文献   

8.
《Colloids and Surfaces》1992,62(1-2):119-130
The kinetics of localized reversible and irreversible adsorption of interacting particles on homogeneous surfaces was analysed. Asymptotic analytical equations were derived for the surface blocking parameter B(0), and for adsorption kinetics and adsorption isotherms in the limit of low and high surface concentrations. It was found that the geometrical blocking effect was much more pronounced than the Langmuir model predicts, especially for high surface concentrations and low ionic strengths of suspensions.The new adsorption isotherm formulated indicates that for a large adsorption constant, Ka, the equilibrium surface concentration becomes proportional to K−1/3a, whereas in the Langmuir model this quantity is approached as K−1a (for Ka ≫I). In the case of irreversible adsorption the theoretical predictions were experimentally tested by applying the direct microscope observation method. Monodisperse suspensions of negatively charged latex particles were used in these experiments with silanized mica sheets as the adsorbing surface. Our theoretical predictions were quantitatively confirmed, indicating that the Langmuir model is not appropriate for describing localized adsorption of particles on homogeneous surfaces.  相似文献   

9.
We present the preparation and characterization of methylene blue-containing silica-coated magnetic particles. The entrapment of methylene blue (MB), a photodynamic therapy drug under study in our group, in the silica matrix took place during the growth of a silica layer over a magnetic core composed of magnetite nanoparticles. The resulting material was characterized by transmission electron microscopy (TEM), light scattering, and X-ray diffraction. It is composed of approximately 30 nm silica spheres containing magnetic particles of 11 +/- 2 nm and methylene blue entrapped in the silica matrix. The immobilized drug can generate singlet oxygen, which was detected by its characteristic phosphorescence decay curve in the near-infrared and by a chemical method using 1,3-diphenylisobenzofuran to trap singlet oxygen. The lifetime of singlet oxygen was determined to be 52 micros (in acetonitrile) and 3 micros (in water), with both values being in good agreement with those in the literature. The release of singlet oxygen (etaDelta) was affected by the encapsulation of MB in the silica matrix, which caused a reduction to 6% of the quantum yield of MB free in solution. The magnetization curve confirmed the superparamagnetic behavior with a reduced saturation magnetization in respect to uncoated magnetic nanoparticles, which is consistent with the presence of a diamagnetic component over the magnetite surface. The result is a single particle platform that combines therapy (photosensitizer) and diagnostic (MRI contrast agent) possibilities at the same time, as well as drug targeting.  相似文献   

10.
Polymeric micro- and nanogels are defined by their water-swollen hydrophilic networks that can often impart outstanding biocompatibility and high-colloidal stability. Unfortunately, this highly hydrophilic nature limits their potential in areas where hydrophobic or amphiphilic interactions are required, for example, the delivery of hydrophobic cargoes or tailored interactions with amphipathic (bio-)surfaces. To overcome this limitation, amphiphilic micro−/nanogels are emerging as new colloidal materials that combine properties from hydrogel networks with hydrophobic segments, known from solid hydrophobic polymer particles or micellar cores. The ability to accurately adjust the balance of hydrophobic and hydrophilic components in such amphiphilic colloidal systems enables new tailored properties. This opens up new applications ranging from the controlled and sustained delivery of hydrophobic drugs, over carriers for catalytic moieties, to their assembly at hydrophilic/hydrophobic interfaces, for example, as advanced stabilizers in Pickering emulsions. While promising, the synthetic realization of such amphiphilic materials remains challenging since hydrophobic and hydrophilic moieties need to be combined in a single colloidal system. As a result, adjusting the micro−/nanogel amphiphilicity often changes the colloidal features too. To overcome these limitations, various strategies have been reported. The aim of this review is to give a brief overview of important synthetic tools, considering both advantages and disadvantages, thus critically evaluating their potential in different research fields.  相似文献   

11.
Temperature-sensitive hydrophilic gel microcapsules have been newly prepared. That is, poly ( -lysineisopropylamide–terephthalic acid) microcapsules containing water have been obtained by an interfacial polymerization at a water/oil interface between -lysineisopropylamide and terephthaloyldichloride. The microcapsule changes its size between 33 and 35°C. Under 33°C, the microcapsules are fully spherical and can be redispersed in distilled water, while are aggregated above 35°C. The microcapsules, which are observed to show aggregation above 33°C, can be redispersed by decreasing temperature within a few second. The thermosensitive morphological changes of the microcapsules are thus reversible. Also, it has been shown that the permeability of sodium chloride through the microcapsule membrane changes remarkably between 33 and 35°C, while it is kept almost constant independent of temperature between 25 and 33°C or between 35 and 55°C. The permeability of solutes is higher under 33°C than that above 35°C. Such thermosensitive properties result from the fact that the polymer membrane has isopropylamide groups. That is, -lysineisopropylamide has a chemical structure similar to N-isopropylacrylamide, the polymer of which, poly (N-isopropylacrylamide), is a thermosensitive hydrogel having its phase transition temperature around 33°C.  相似文献   

12.
According to the method of Ohmori et al. (J. Colloid Interface Sci. 150 (1992) 594), a procedure is examined for the buildup of uniform silica layers on monodispersed hematite particles. It appears that the silica layer resulting is homogeneous and the layer thickness is controlled by the concentration of tetraethylorthosilicate (TEOS) in the medium. Further, egg PC liposomes, a typical biocolloid, are introduced onto the silica-coated hematite particle. The formation was proceeded by two types of processes: (1) heterocoagulation between the silica-coated hematite and egg PC liposomes by controlling the concentration of LaCl(3) in the medium, or (2) buildup using two proteins (lysozyme or cytochrome C) as binder molecules. These results were analyzed by zeta-potential measurements and a contact-type X-ray microscope, which is a unique technique for obtaining X-ray images of biological specimens in water with high resolution.  相似文献   

13.
Two series of amphiphilic hydrogels of various compositions were prepared by sequentially interpenetrating two polymer networks, a poly(2-hydroxyethyl acrylate) (PHEA) network inside either a macroporous matrix of poly(methyl methacrylate) (PMMA) or a macroporous poly(ethyl acrylate) (PEA) network. In both cases poly(2-hydroxyethyl acrylate) (PHEA) served as network II, and the firstly formed porous network was a hydrophobic homonetwork, PMMA or PEA, that conferred mechanical strength to the hydrogel. In order to obtain hydrogels with high hydrophilic content, the first network was prepared in the presence of a solvent, thus yielding a macroporous network. The two families of IPNs thus obtained were: (net-PMMA)-ipn-(net-PHEA) and (net-PEA)-ipn-(net-PHEA), with a PHEA content ranging from 36% to 87% and from 64% to 94%, respectively. The novelty of the work consisted in comparing the effect of using as the first macroporous network a polymer which is glassy at room temperature (PMMA) and another of the same family (PEA) but which is in the rubber state at room temperature. Swelling studies showed that the specific equilibrium water content of PHEA falls from 1.6 for pure (unconfined) PHEA to values that range from 0.4 to 1, for the (net-PMMA)-ipn-(net-PHEA), whereas in the second IPNs family, the equilibrium water uptake of PHEA phase is, at least, the same as that of the pure PHEA (in some cases it is greater). This means that the expansion of the PHEA phase is not restricted by the confining hydrophobic component when this last is in the rubber state at room temperature. Whereas for the first IPNs the mechanical properties significantly increased (storage modulus at 37 °C from 0.25 to 2.5 GPa) compared with those of pure PHEA (25.12 MPa), little if any reinforcing effect was observed in the second type of IPNs. This is due to the fact that the glass transition of the PEA network takes place at a lower temperature than that of PHEA, so both components are in the rubbery state at room temperature. Both series behave differently also in dynamic water sorption experiments: the rigid PMMA network hinders the diffusion of water, yielding lower values of the apparent diffusion coefficients. By contrast, with the PEA polymer as network I this diffusion is similar to that of the pure PHEA homonetwork.  相似文献   

14.
The electronic and optical natures of silica-coated semiconductor nanocrystals (Cd(2)Te(2)@(SiO(2))(24)) have been investigated by density functional theory (DFT) and time-dependent DFT calculations. The calculated results of Cd(2)Te(2)@(SiO(2))(24) have revealed that the structural synergy effect between the Cd(2)Te(2) quantum dots (QDs) and the silica coating shell plays a dominant role in the photoelectric properties. The binding of embedded Cd(2)Te(2) to the outer silica coating shell leads to the distortion of the silica nanocage, indicating strong coupling between the QDs and silica shell. The optical features of Cd(2)Te(2) clusters and Cd(2)Te(2)@(SiO(2))(24) complexes were evaluated using the time-dependent DFT method. It is determined that the maximal absorption peak of isolated Cd(2)Te(2) in a UV-Vis absorption spectrum appears at 584 nm, which shifts to 534 nm when the Cd(2)Te(2) QDs were encapsulated by silica, in close agreement with the experimental evidence. The excited process has a direct electronic transition character from the occupied Cd(2)Te(2) states to the outer silica nanocage excited states (core → shell electronic transitions). A deep insight into silica-coated QD systems is beneficial for understanding their optical nature and the development of core/shell QDs.  相似文献   

15.
Fricke gel dosimeters have great potential for three-dimensional (3D) dose verification in radiation therapy; however, they suffer from time-dependent ion diffusion after irradiation, severely affecting their stability and reliability. In this work, a pullulan-based amphiphilic molecule was synthesized, characterized, and self-assembled into nanogels. Nanogel structures were embedded into gel dosimeters to reduce the diffusion rates, and radiation-sensitive nanogel-incorporated Fricke hydrogel nanocomposites were prepared successfully. The results demonstrated that the diffusion coefficient of improved dosimeters was reduced to 0.125 ± 0.001 mm2 h−1, while maintaining the high optical dose sensitivity (0.0410 ± 0.0004 Gy−1 cm−1). It provides a powerful tool toward the practical application of 3D dosimeters.  相似文献   

16.
The viscoelastic properties of poly(L-lysine-alt-terephthalic acid) (PPL) microcapsules were studied as a function of medium pH. An abrupt increase in the apparent relative viscosity of PPL microcapsule suspensions was observed in the pH range between 4.0 and 7.0 due to the increased total particle volume concentration caused by a sudden increase in microcapsule size. Above pH 7.0, the relative viscosity decreased, being indicative of a deformability of the microcapsules. The adiabatic compressibility of PPL microcapsule membranes was the lowest at pH 4.0 and increased remarkably when the pH value departed from 4.0. On the contrary, the membrane density was the highest at pH 4.0 and decreased as medium pH shifted to either side of this value, implying that the microcapsules behave as compact particles at low pH and loose particles at high pH. The amount of hydrated water also showed a similar change when the pH of the medium was altered.  相似文献   

17.
We systematically study the design of simple patchy sphere models that reversibly self-assemble into monodisperse icosahedral clusters. We find that the optimal patch width is a compromise between structural specificity (the patches must be narrow enough to energetically select the desired clusters) and kinetic accessibility (they must be sufficiently wide to avoid kinetic traps). Similarly, for good yields the temperature must be low enough for the clusters to be thermodynamically stable, but the clusters must also have enough thermal energy to allow incorrectly formed bonds to be broken. Ordered clusters can form through a number of different dynamic pathways, including direct nucleation and indirect pathways involving large disordered intermediates. The latter pathway is related to a reentrant liquid-to-gas transition that occurs for intermediate patch widths upon lowering the temperature. We also find that the assembly process is robust to inaccurate patch placement up to a certain threshold and that it is possible to replace the five discrete patches with a single ring patch with no significant loss in yield.  相似文献   

18.
The mechanical properties of polymer composites, reinforced with silica-coated multiwall carbon nanotubes (MWNTs), have been studied using the nanoindentation technique. The hardness and the Young's modulus have been found to increase strongly with the increasing content of these nanotubes in the polymer matrix. Similar experiments conducted on thin films containing MWNTs, but without a silica shell, revealed that the presence of these nanotubes does not affect the nanomechanical properties of the composites. While carbon nanotubes (CNTs) have a very high tensile strength due to the nanotube stiffness, composites fabricated with CNTs may exhibit inferior toughness. The silica shell on the surface of a nanotube enhances its stiffness and rigidity. Our composites, at 4 wt % of the silica-coated MWNTs, display a maximum hardness of 120 +/- 20 MPa, and a Young's modulus of 9 +/- 1 GPa. These are respectively 2 and 3 times higher than those for the polymeric matrix. Here, we describe a method for the silica coating of MWNTs. This is a simple and efficient technique, adaptable to large-scale production, and might lead to new advanced polymer based materials, with very high axial and bending strength.  相似文献   

19.
Microparticle patterns have been fabricated on a nonconductive glass substrate and a conductive indium tin oxide (ITO) substrate using negative dielectrophoresis (n-DEP). The patterned microparticles on the substrate were immobilized by covalent bonding or embedded into polymer sheets or strings. The patterning device consisted of an ITO interdigitated microband array (IDA) electrode as the template, a glass or ITO substrate, and a polyester film (10-microm thickness) as the spacer. A suspension of 2-microm-diameter polystyrene particles was introduced into the device between the upper IDA and the bottom glass or ITO support. An ac electrical signal (typically 20 Vpp, 3 MHz) was then applied to the IDA, resulting in the formation of line patterns with low electric field gradient regions on the bottom support. When the glass substrate was used as the bottom support, the particles aligned under the microband electrodes of the IDA within 5 s because the aligned areas on the support were regions with the weakest electric field; however, for the ITO support, the particles were directed to the regions under the electrode gap and aligned on the support because these regions had the weakest electric field. The width of the particle lines could be roughly controlled by regulating the initial concentration of the suspended particles. The particles forming the line and grid patterns with single-particle widths were immobilized by using a cross-linking reaction between the amino groups on the aligned particles and N-hydroxysuccinimide-activated ester on the glass substrate activated by succinimidyl 4-(p-maleimidophenyl)-butyrate (SMPB). The patterned particles were also embedded in a photoreactive hydrogel polymer. A prepolymer solution of poly(ethylene glycol) diacrylate (PEG-DA) was used as the suspension medium to maintain the particle patterns in the polymerized hydrogel sheet and string following photopolymerization. The hydrogel sheets with particle patterns were fabricated by ultraviolet (UV) irradiation through the ITO-IDA template for 120 s. Hydrogel strings with the aligned particles were fabricated by using a conductive ITO support and a Pt-IDA template. Pt-IDA was used as a template as well as a photomask to block UV transmission. The present procedure affords extremely simple, rapid, and highly reproducible fabrication of particle arrays. The reusability of the template IDA electrode is also a substantial advantage over previous methods.  相似文献   

20.
Macroscopic behavior of a system of brownian particles interacting with each other through potential forces is described by a generalized diffusion equation (GDE) for the density of particles. The diffusion coefficient in the GDE is given by the generalized Stokes—Einstein relation and generally depends on the density. In the presence of long-range interactions, the GDE becomes non-local in space. When a Coulomb interaction exists, the GDE corresponds to an improvement of the Poisson—Boltzmann equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号