首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Tetrakis(di-tert-butylmethylsilyl)distannene 1 was synthesized by the coupling reaction of tBu2MeSiNa with SnCl2-diox in THF and isolated as dark-green crystals. X-ray analysis of 1 showed the shortest Sn=Sn double bond (2.6683(10) A) among all acyclic distannenes, an almost planar geometry around the Sn atoms, and a highly twisted Sn=Sn double bond. The reaction of distannene 1 with CCl4 produced 1,2-dichlorodistannane 2, implying that 1 does not dissociate into stannylenes, both in the solid state and in solution. The one-electron reduction of 1 with potassium furnished the corresponding distannene anion radical 3, the stable ion radical of the heavy alkene analogues, which has been fully characterized by X-ray crystallography and ESR spectroscopy.  相似文献   

2.
Treatment of the cage compound P6C4(t)Bu4 with M(N(SiMe3)2)2 (M = Ge or Sn) or Pb(C6H3(NMe2)2- 2,6) at room temperature results in their specific insertion into the P-P bond connecting the two 5-membered P3C2(t)Bu2 rings. The products were fully characterised by multinuclear NMR spectroscopy and single crystal X-ray diffraction studies.  相似文献   

3.
Reactions of nine-atom deltahedral clusters (Zintl ions) of tin, Sn 9 (4-), with alkyl chlorides, RCl (R = (t) Bu, (n) Bu, (s) Bu), and alkynes (Me3Si-C[triple bond]C-SiMe3, Ph-C[triple bond]CH) yielded the corresponding alkylated and alkenylated clusters [Sn 9-R] (3-). The triple bonds of the alkynes are hydrogenated to double bonds in the process. These are the first tin-based organo-Zintl ions, that is Zintl ions of tin that were subsequently functionalized with organic groups. They are analogous to the recently reported germanium-based derivatives. The (t) Bu-, vinyl-, and styrene-functionalized clusters [Sn 9- (t) Bu] (3-), [Sn 9-CH=CH 2] (3-), and [Sn 9-CH=CH-Ph] (3-), respectively, were structurally characterized in the solid state with [K(2,2,2-crypt)] (+) countercations and in solution by electrospray mass spectrometry. Crystal data: [K(2,2,2-crypt)] 3[Sn 9- (t) Bu].2py, triclinic, P1, a = 14.4259(3), b = 16.2725(4), and c = 22.5593(5) A, alpha = 86.092(1), beta = 78.952(1), and gamma = 65.114(1) degrees , V = 4714.48(7) A (3), Z = 2; [K(2,2,2-crypt)] 3[Sn 9-CH=CH 2].2py, triclinic, P-1, a = 15.6988(3), b = 17.4195(4), and c = 17.4432(4) A, alpha = 86.299(1), beta = 81.566(1), and gamma = 85.349(1) degrees , V = 4696.27(18) A (3), Z = 2; [K(2,2,2-crypt)] 3[Sn 9-CH=CH-Ph].tol.0.75py, monoclinic, C2/c, a = 38.5883(9), b = 23.3893(5), and c = 25.0192(5) A, beta = 120.269(1) degrees , V = 19502.6(7) A (3), Z = 8.  相似文献   

4.
Diaminostannylenes react with [Ru(3)(CO)(12)] without cluster fragmentation to give carbonyl substitution products regardless of the steric demand of the diaminostannylene reagent. Thus, the Sn(3)Ru(3) clusters [Ru(3){μ-Sn(NCH(2)(t)Bu)(2)C(6)H(4)}(3)(CO)(9)] (4) and [Ru(3){μ-Sn(HMDS)(2)}(3)(CO)(9)] (6) [HMDS = N(SiMe(3))(2)] have been prepared in good yields by treating [Ru(3)(CO)(12)] with an excess of the cyclic 1,3-bis(neo-pentyl)-2-stannabenzimidazol-2-ylidene and the acyclic and bulkier Sn(HMDS)(2), respectively, in toluene at 110 °C. The use of smaller amounts of Sn(HMDS)(2) (Sn/Ru(3) ratio = 2.5) in toluene at 80 °C afforded the Sn(2)Ru(3) derivative [Ru(3){μ-Sn(HMDS)(2)}(2)(μ-CO)(CO)(9)] (5). Compounds 5 and 6 represent the first structurally characterized diaminostannylene-ruthenium complexes. While a further treatment of 5 with Ge(HMDS)(2) led to a mixture of uncharacterized compounds, a similar treatment with the sterically alleviated diaminogermylene Ge(NCH(2)(t)Bu)(2)C(6)H(4) provided [Ru(3){μ-Sn(HMDS)(2)}(2){μ-Ge(NCH(2)(t)Bu)(2)C(6)H(4)}(CO)(9)] (7), which is a unique example of Sn(2)GeRu(3) cluster. All these reactions, coupled to a previous observation that [Ru(3)(CO)(12)] reacts with excess of Ge(HMDS)(2) to give the mononuclear complex [Ru{Ge(HMDS)(2)}(2)(CO)(3)] but triruthenium products with less bulky diaminogermylenes, indicate that, for reactions of [Ru(3)(CO)(12)] with diaminometalenes, both the volume of the diaminometalene and the size of its donor atom (Ge or Sn) are of key importance in determining the nuclearity of the final products.  相似文献   

5.
Synthesis of the Stannatetraphospholanes (tBuP)4SnR2 (R = tBu, nBu, C6H5) and (tBuP)4Sn(Cl)nBu Molecular and Crystal Structure of (tBuP)4Sn(tBu)2 The reaction of the diphosphide K2[tBuP-(tBuP)2-PtBu] 4 with the halogenostannanes (tBu)2SnCl2, (nBu)2SnCl2, (C6H5)2SnCl2 or nBuSnCl3 in a molar ratio of 1 : 1 leads via a [4 + 1]-cyclocondensation reaction to the stannatetraphospholanes (tBuP)4SnR2 3 b–3 d and (tBuP)4Sn(Cl)nBu 3 e , respectively, with the binary 5-membered P4Sn ring system. 3 b was characterized by a single crystal structure analysis; the 5-membered ring exists in a planar conformation. The compounds 3 b–3 e were identified by NMR and also by mass spectroscopy; the 31P{1H}-NMR spectra of 3 b–3 d showed an AA′MM′ (AA′MM′X), 3 e on the other hand an ABCD (ABCDX) spin system.  相似文献   

6.
The first thermally robust Ge II −Sn II compound 1 and the structurally characterized SnII-SnII analogue 2 , which maintain their structural integrity in solution, were obtained by treating MAr2 (M=Ge, Sn; Ar=2,6-(Me2N)2C6H3) with Sn[1,8-(NR2)2C10H6] (R=CH2tBu). On the basis of structural and spectroscopic data, the M−Sn bond is regarded as the interaction of a MAr2 donor with an Sn[1,8-(NR2)2C10H6] acceptor.  相似文献   

7.
The first heterobimetallic Bi:Sn alkoxide complexes [Bi(2)SnO(OCH(CF(3))(2))(5)(O(t)Bu)(3)(THF)] (1) and [BiSnO(OCH(CF(3))(2))(3)(O(t)Bu)(2)](2) (2) are described. The complexes were obtained through mixing and heating equimolar quantities of the component alkoxides, Bi(OCH(CF(3))(2))(3) and Sn(O(t)Bu)(4), under solvent-free conditions (1) and in THF (2). The solid-state structures were determined by single crystal X-ray diffraction showing ligand redistribution from Bi(III) to Sn(IV) in the two molecular species. Compound 2 behaves as a single-source precursor for the thermolytic formation of bismuth pyrostannate, Bi(2)Sn(2)O(7).  相似文献   

8.
Synthesis and Structure Analysis of (tBuP)4Sn(CH3)2 and (CH3)2Sn[(tBu)P? P(tBu)]2Sn(CH3)2 The diphosphides K2[(tBu)P? (tBuP)2? P(tBu)] 7 or K2[(tBu)P? P(tBu)] 8 react with (CH3)2SnCl2 in a molar ratio of 1 : 1 to form the binary 5-membered ring system P4Sn 4 a and the 6-membered ring system Sn(P2)2Sn 5 a respectively. When (CH3)2SnCl2, however, is treated with 8 in a molar ratio of 2 : 1 the 4-membered ring system P3Sn 2 a is formed which includes the fragmentation of the intermediate K2[(CH3)2Sn ((tBu)P? P(tBu))2] 9. 4 a and 5 a could be obtained in a pure form and characterized NMR spectroscopically and by X-ray structure analyses; 2 a was identified only NMR spectroscopically.  相似文献   

9.
The reaction of ketene OCCPh(2) with the four-coordinate titanium(IV) imide (L(1))Ti[double bond]NAr(OTf) (L(1)(-) = [Ar]NC(CH(3))CHC(CH(3))N[Ar], Ar = 2,6-[CH(CH(3))(2)](2)C(6)H(3)) affords the tripodal dimine-alkoxo complex (L(2))Ti[double bond]NAr(OTf) (L(2)(-) = [Ar]NC(CH(3))CHC(O)[double bond]CPh(2)C(CH(3))N[Ar]). Complex (L(2))Ti[double bond]NAr(OTf) forms from electrophilic attack of the beta-carbon of the ketene on the gamma-carbon of the Nacnac(-) NCC(gamma)CN ring. On the contrary, nucleophiles such as LiR (R(-) = Me, CH(2)(t)Bu, and CH(2)SiMe(3)) deprotonate cleanly in OEt(2) the methyl group of the beta-carbon on the former Nacnac(-) backbone to yield the etherate complex (L(3))Ti[double bond]NAr(OEt(2)), a complex that is now supported by a chelate bis-anilido ligand (L(3)(2)(-) = [Ar]NC(CH(3))CHC(CH(2))N[Ar]). In the absence of electrophiles or nucleophiles, the robust (L(1))Ti[double bond]NAr(OTf) template was found to form simple adducts with Lewis bases such as CN(t)Bu or NCCH(2)(2,4,6-Me(3)C(6)H(2)). Complexes (L(2))Ti[double bond]NAr(OTf), (L(3))Ti[double bond]NAr(OEt(2)), and the adducts (L(1))Ti[double bond]NAr(OTf)(XY) [XY = CN(t)Bu and NCCH(2)(2,4,6-Me(3)C(6)H(2))] were structurally characterized by single-crystal X-ray diffraction studies.  相似文献   

10.
The diorganotin(IV) complexes, R2Sn(dtbu) (R = Me 1 , n‐Bu 2 , Ph 3 , PhCH2 4 ; H2dtbu = 2,5‐dithiobiurea), have been synthesized and characterized by IR, 1H, and 119Sn NMR spectroscopy. The structures of 1 and 3 have been determined by X‐ray crystallography. Crystal structures show that both complexes 1 and 3 consist of molecules in which the bideprotonated ligand is N,S,S‐bonded, and the tin atom exhibits distorted pentacoordination with small differences between the methyl and phenyl derivatives in bond distances and bond angles. The unusual coordination mode of the dtbu2− anion creates four‐ and five‐membered chelate rings. Moreover, the packing of complexes 1 and 3 are stabilized by the hydrogen bonding. © 2006 Wiley Periodicals, Inc. Heteroatom Chem 17:93–98, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20173  相似文献   

11.
The reactions of [AuCl(THT)] (THT = tetrahydrothiophene) with 1 equiv of the group 14 diaminometalenes M(HMDS)(2) [M = Ge, Sn; HMDS = N(SiMe(3))(2)] lead to [Au{MCl(HMDS)(2)}(THT)] [M = Ge (1), Sn (2)], which contain a metalate(II) ligand that arises from insertion of the corresponding M(HMDS)(2) reagent into the Au-Cl bond of the gold(I) reagent. While compound 1 reacts with more Ge(HMDS)(2) to give the germanate-germylene derivative [Au{GeCl(HMDS)(2)}{Ge(HMDS)(2)}] (3), which results from substitution of Ge(HMDS)(2) for the THT ligand of 1, an analogous treatment of compound 2 with Sn(HMDS)(2) gives the stannate-stannylene derivative [Au{SnCl(HMDS)(2)}{Sn(HMDS)(2)(THT)}] (4), which has a THT ligand attached to the stannylene tin atom and which, in solution at room temperature, participates in a dynamic process that makes its two Sn(HMDS)(2) fragments equivalent (on the NMR time scale). A similar dynamic process has not been observed for the AuGe(2) compound 3 or for the AuSn(2) derivatives [Au{SnR(HMDS)(2)}{Sn(HMDS)(2)(THT)}] [R = Bu (5), HMDS (6)], which have been prepared by treating complex 4 with LiR. The structures of compounds 1 and 3-6 have been determined by X-ray diffraction.  相似文献   

12.
The new diphosphene DmpP=PMes* (Dmp = 2,6-Mes(2)C(6)H(3); Mes* = 2,4,6-(t)Bu(3)C(6)H(2), 1) having two different classes of sterically demanding aryls has been prepared and structurally characterized. This structure appears to be the first featuring both types of sterically demanding groups (a meta-terphenyl and Mes*) in a single molecule about a multiply bonded unit. Compound 1 features a P=P bond length of 2.024(13) A. The structure of 1 also allows comparisons to the two previously structurally characterized symmetric diphosphenes DmpP=PDmp and Mes*P=PMes*. The crystal structure of the cyclotetraphosphane [DmpPPPh](2) (3), the product of self-dimerization of the unstable diphosphene DmpP=PPh (2), has been determined. The structure of 3 demonstrates that a single bulky Dmp group is insufficient to prevent dimerization of 2. (31)P NMR data for all three compounds are also reported.  相似文献   

13.
Two diorganotin(IV)-NANA complexes (NANA (1) = beta-N-acetyl-Neuraminic Acid = 5-amino-3,5-dideoxy-D-glycero-beta-D-galactononulosic acid) with formula Me(2)Sn(iv)NANA (2) and Bu(2)Sn(IV)NANA (3) were synthesized and characterized by (1)H, (13)C and (119)Sn NMR spectroscopy, both in D(2)O and DMSO-d(6) solutions. The experimental data in DMSO suggested the monosaccharide bidentate chelation via O1 carboxylate and vicinal O2 alkoxide atoms, which, in D(2)O, can be dynamically extended to a third binding site (O8 atom) of the pendant chain. Coordination at the tin atom is discussed on the basis of experimental NMR data and DFT calculation.  相似文献   

14.
Treatment of NaW2Cl7(THF)5 with 4 equiv of (t)Bu3SiNHLi afforded the C2 W(III) dimer [((t)Bu3SiNH)2WCl]2 (1, d(W triple bond W) = 2.337(2) A), which is a rare, primary amide M2X4Y2 species. Its degradation provided evidence of NH bond activation by the ditungsten bond. Addition of 2 equiv of (t)Bu3SiNHLi or TlOSi(t)Bu3 to 1 yielded H2 and hydride ((t)Bu3SiN)2((t)Bu3SiNH)WH (2, d(WH) = 1.67(3) A) or ((t)Bu3SiN)2((t)Bu3SiO)WH (3). Thermolysis (60 degrees C, 16 h) of 1 in py gave ((t)Bu3SiN)2WHCl(py) (4-py, 40-50%), ((t)Bu3SiN)2WCl2(py) (6-py, 10%), and ((t)Bu3SiN)2HW(mu-Cl)(mu-H)2W(NSi(t)Bu3)py2 (5-py2, 5%), whereas thermolysis in DME produced ((t)Bu3SiN)2WCl(OMe) (7, 30%), ((t)Bu3SiN)2WCl2 (6, 20%), and ((t)Bu3SiN)2HW(mu-Cl)(mu-H)2W(NSi(t)Bu3)DME (5-DME, 3%). Compound 7 was independently produced via thermolysis of 4-py and DME (-MeOEt, -py), and THF and ethylene oxide addition to hydride 2 gave ((t)Bu3SiN)2((t)Bu3SiNH)WO(n)Bu (8) and ((t)Bu3SiN)2((t)Bu3SiNH)WOEt (9), respectively. Dichloride 6 was isolated from SnCl4 treatment of 1 with the loss of H2. Sequential NH bond activations by the W2 core lead to "((t)Bu3SiN)2WHCl" (4) and subsequent thermal degradation products. Thermolysis of 1 in the presence of H2C=CH(t)Bu and PhC triple bond CPh trapped 4 and generated ((t)Bu3SiN)2W((neo)Hex)Cl (10) and a approximately 6:1 mixture of ((t)Bu3SiN)2WCl(cis-CPh=CPhH) (11-cis) and ((t)Bu(3)SiN)2WCl(trans-CPh=CPhH) (11-trans), respectively. Thermolysis of the latter mixture afforded ((t)Bu3SiNH)((t)Bu3SiN)WCl(eta2-PhCCPh) (12) as the major constituent. Alkylation of 1 with MeMgBr produced ((t)Bu3SiN)2W(CH3)2 (13), as did addition of 2 equiv of MeMgBr to 6. X-ray crystal structure determinations of 1, 2, 5-py2, 6-py, 11-trans, and 12 confirmed spectroscopic identifications. A general mechanism that features a sequence of NH activations to generate 4, followed by chloride metathesis, olefin insertion, etc., explains the formation of all products.  相似文献   

15.
Reactions of the tin precursors, R2Sn(OMe)OSO2Me (R=n-Pr, n-Bu), with an equimolar quantity of 2-quinoline/4-methoxy-2-quinoline/1-isoquinoline carboxylic acid in acetonitrile proceed under mild conditions (rt,12-15 h) via selective Sn-OMe bond cleavage to afford the corresponding mixed-ligand diorganotin derivatives [R2Sn(O2CR')OSO2Me]2 [R'=C9H6N-2, R=n-Pr (1), n-Bu (2); R'=4-OMe-C9H5N-2, R=n-Pr (3), n-Bu (4); R'=C9H6N-1, R=n-Pr (5), n-Bu (6)]. These have been characterized by FAB mass, IR, and multinuclear (1H, 13C, 119Sn) NMR spectral data and X-ray crystallography (for 4 and 6). The molecular structure of 4 (C20H29NO6SSn, monoclinic, P2(1)/n, a=14.1(13) A, b=16.7(18) A, c=20.3(19) A, beta=107(4) degrees, Z=8) comprises distorted octahedral geometry around each tin atom by virtue of weakly bridging methanesulfonate [Sn(1A)-O(3B)=3.010, Sn(1B)-O(3A)=2.984 A] and (N,O) chelation of the carboxylate ligands. The spectral data of 1-4 suggest a similar structural motif in solution. The molecular structure of 6 (C38H53N2O10S2Sn2, monoclinic, P2(1)/c, a=11.339(2) A, b=14.806(3) A, c=24.929(5) A, beta=100.537(3) degrees, Z=4) reveals varying bonding preferences with monomeric units being held together by a bridging methanesulfonate [Sn(2)-O(5)=2.312(2) A] and a carboxylate group bonded to Sn(1) and Sn(2) atoms, respectively. Slow hydrolysis of compound 2 derived from 2-quinoline carboxylic acid in moist CH3CN affords the asymmetric distannoxane, [Bu2Sn(O2CC9H6N-2)-O-Sn(OSO2Me)Bu2]2 (7) (C27H45NO6SSn2, monoclinic, C2/c, a=21.152(3) A, b=13.307(2) A, c=26.060(4) A, beta=110.02(10) degrees, Z=8) featuring ladder type structural motif by virtue of unique mu2-coordination of covalently bonded oxygen atoms [O(6), O(6)#1] of the methanesulfonate groups.  相似文献   

16.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

17.
The reaction of the stannylene R2Sn : (R = 2-tBu-4,5,6-Me3C6H) with R′2Sn (R′ = Si(SiMe3)3) proceeds with substituent exchange to afford the heteroleptic stannylene RR′Sn : which, in the solid state, forms the distannene RR′Sn = SnRR′ ( 7 ). The X-ray structure analysis of 7 reveals a trans-bent arrangement of the substituents with a large fold angle of 44.9° and an Sn–Sn double bond length of 279.14(4) pm.  相似文献   

18.
The reaction of R'NHLi (R = (t)Bu, (t)Oct) with Ph(2)P(NSiMe(3))(2)Te(Cl)NPPh(2)NSiMe(3) in toluene at -78 degrees C, followed by warming to 23 degrees C, produces the tellurium diimide dimers RNTe(&mgr;-NR')(2)TeNR (2a, R' = (t)Bu, R = NPPh(2)NSiMe(3); 2b, R' = (t)Oct, R = NPPh(2)NSiMe(3)) and Ph(2)P(NHSiMe(3))(NSiMe(3)). X-ray analyses revealed that 2a and 2b have centrosymmetric structures containing a planar four-membered Te(2)N(2) ring and short exocyclic tellurium-nitrogen bond lengths (d(Te-N) = 1.900(5) and 1.897(4) or 1.905(4) ? for 2a and 2b, respectively). The exocyclic imido substituents adopt a trans arrangement with respect to the Te(2)N(2) ring. By contrast, the reaction of 2,4,6-(t)Bu(3)C(6)H(2)NHLi with Ph(2)P(NSiMe(3))(2)Te(Cl)NPPh(2)NSiMe(3) in toluene under similar conditions produces the telluradiazole ((t)Bu(2)C(6)H(2)N(2)Te)(2) (3), which exists as a weakly associated dimer in the solid state with intramolecular Te-N distances of 2.628(4) ?. The tellurium diimide dimer (t)BuNTe(&mgr;-N(t)Bu)(2)TeN(t)Bu (2c'), prepared by the reaction of TeCl(4) with (t)BuNHLi in a 1:4 molar ratio, consists of a folded Te(2)N(2) ring with exocyclic N(t)Bu groups in a cis orientation. The (1)H, (31)P, and (125)Te NMR spectra of 2a and 2b indicate that the trans isomers slowly transform into the corresponding cis isomers in solution. Crystals of 2b are triclinic, space group P&onemacr; (No. 2), with a = 13.304(3) ?, b = 16.927(3) ?, c = 13.292(5) ?, alpha = 98.94(2), beta = 109.27(2), gamma = 69.04(2) degrees, V = 2636(1) ?(3), and Z = 4. The final R and R(w) values were 0.034 and 0.033, respectively. Crystals of 2c' are orthorhombic, space group Pnma (No. 62), with a = 9.535(3) ?, b = 14.264(3) ?, c = 16.963(4) ?, V = 2307.1(9) ?(3), and Z = 4. The final R and R(w) values were 0.040 and 0.040, respectively. Crystals of 3 are monoclinic, space group P2(1)/n (No. 14), with a = 9.117(3) ?, b = 11.481(4) ?, c = 16.550(4) ?, beta = 97.76(2) degrees, V = 1716.5(8) ?(3), and Z = 4. The final R and R(w) values were 0.031 and 0.034, respectively.  相似文献   

19.
利用(PhCH_2)_3Sn]_2O与ArCH=CHCO_2H反应,合成6个新的[PhCH_2Sn(O) (O_2CCH=CHAr)]_6簇合物。通过元素分析、红外光谱和X射线单晶衍射对其结构进 行了表征。用X射线单晶衍射测定了[PhCH_2Sn(O)(O_2CCH=CHPh)]_6的晶体结构, 结果表明,该簇合物为三斜晶系,空间群P1, a = 1.6771(3) nm, b = 1.8020(4) nm, c = 2.1073(4) nm, α = 108.111(3)°β = 103.614(3)°,γ = 104.679 (3)°,Z = 2, V = 5.5033(18) nm~3, D_c = 1.350 g/cm~3, μ = 1.396 mm~(-1) , F(000) = 2208, R = 0.0606, wR = 0.698。该化合物为鼓型簇状结构,锡原子 呈畸变的八面体构型。  相似文献   

20.
The sodium silyl chalcogenolates NaESiR(t)Bu(2) (R = Ph, (t)Bu; E = S, Se, Te), accessible by the nucleophilic degradation of S, Se, or Te by the sodium silanides NaSiR(t)Bu(2) (R = Ph, (t)Bu), have been characterized by X-ray structure analysis. Protonolysis of the sodium silyl chalcogenolates yields the corresponding chalcogenols. The Cu and Zn chalcogenolates, [Cu(SSiPh(t)Bu(2))](4) and [ZnCl(SSi(t)Bu(3))(THF)](2), have been synthesized by metathesis reactions of CuCl with NaSSiPh(t)Bu(2) and of ZnCl(2) with NaSSi(t)Bu(3), respectively. The solid-state structures of the transition metal thiolates have been determined. The compounds (t)Bu(2)RSiE-ESiR(t)Bu(2) (R = Ph, (t)Bu; E = S, Se, Te) are accessible via air oxidation. With the exception of (t)Bu(3)SiS-SSi(t)Bu(3), these compounds were analyzed using X-ray crystallography and represent the first structurally characterized silylated heavy dichalcogenides. Oxidative addition of (t)Bu(3)SiTe-TeSi(t)Bu(3) to Fe(CO)(5) yields [Fe(TeSi(t)Bu(3))(CO)(3)](2), which has also been structurally characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号