首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
聚乙烯醇(PVA)是一种水溶性的生物相容性好并可降解的合成高分子,PVA通过化学或物理方法交联可以形成水凝胶,PVA与聚丙烯酸(PAA)、聚N-异丙基丙烯酰胺(PNIPA)、聚乙烯基吡咯烷酮(PVP)及壳聚糖形成互穿网络型水凝胶,改善凝胶的性质,另一方面,树型高分子是一  相似文献   

2.
Novel temperature-sensitive poly(N-isopropylacrylamide)/amine-terminated polyamidoamine dendrimer G6-NH2 hydrogels with fast responsive properties were synthesized by forming semi-interpenetrating polymeric networks. In contrast to the conventional PNIPA hydrogel, these new gels showed rapid shrinking rate at the temperature above lower critical solution temperature (LCST), and exhibited higher equilibrium swelling ratio at room temperature. All these properties might be attributed to the incorporation of polyamidoamine dendrimer G6-NH2, which forms water-releasing channels and increases the hydrophilicity of PNIPA network. The novel hydrogels have potential applications in drug and gene delivery.  相似文献   

3.
The purpose of this paper is studying the effect of incorporation of Multiwall Carbon Nanotubes (MWCNT) into two different nanocomposites in poly vinyl alcohol (PVA)/polyvinylpyrrolidone (PVP), and PVA/Polyethylene glycol (PEG). MWCNT were synthesized by chemical vapor deposition (CVD) method using acetylene and Fe/Co/Al2O3 as carbon precursor and catalyst, respectively. Nitric acid and sulfuric acid were used for purification and functionalization of MWCNT. Afterward, highly pure and functionalized MWCNT (0, 0.02, and 0.05% w/w) were incorporated in PVA/PVP and PVA/PEG to synthesize PVA/PVP/MWCNT and PVA/PEG/MWCNT nanocomposites hydrogel membranes that cross-linked by freezing–thawing. PEG and PVP were selected in these nanocomposites as dispersion matrix for MWCNT as well as for increasing the elasticity of the nanocomposites membranes. The morphology of the hydrogels was characterized by SEM, FTIR, XRD, TGA, and the mechanical properties of the hydrogel membranes were investigated. The swelling behavior in different pH-buffer solutions was studied as well as studying weight loss percentage and swelling kinetic. The drug releasing process of the hydrogel membranes was investigated using salicylic acid as a model drug. It was found that MWCNT are dispersed well into the polymers and crystallinity, mechanical properties and thermal stability of the hydrogels contain MWCNT are better than that without MWCNT. Maximum degree of swelling was observed at pH 7 and swelling degree increases with increasing the ratio of MWCNT in the hydrogels from 0.02 to 0.05%. All hydrogel membranes followed non-Fickian mechanism and drug releasing were controlled by varying the pH and amount of MWCNT.  相似文献   

4.
层状纳米纤维素膜/PVA复合水凝胶的制备与力学性能研究   总被引:1,自引:0,他引:1  
采用叠层复合与物理相分离的方法制备了层状纳米细菌纤维素(BC)膜/聚乙烯醇( PVA)复合水凝胶.研究了聚乙烯醇的质量百分数、BC膜的复合层数以及制备条件对复合水凝胶力学性能的影响;通过扫描电镜( SEM)观察比较了复合水凝胶中BC膜层与PVA界面结合情况.结果表明,复合水凝胶的力学性能与PVA的质量百分数和BC膜含水...  相似文献   

5.
The interaction of avidin with biotin was studied on functionalized quartz surfaces terminated with 3-aminopropyltrimethoxysilane (3-APTMS), 2,2'-(ethylenedioxy)bis(ethylenediamine) (DADOO), and fourth-generation amine-terminated polyamidoamine (G4-NH2 PAMAM) dendrimers with the use of Fourier transform infrared reflection-absorption spectroscopy (FT-IRRAS). In particular, the molecular recognition ability of these surfaces was quantified through FT-IRRAS in combination with the use of an alkyne dicobalt hexacarbonyl probe coupled with avidin. The degree of nonspecific adsorption of avidin was determined by exposure of the amine-terminated and/or biotinylated surfaces to solutions of biotin-saturated avidin. The results indicate that the biotinylated 3-APTMS layer exhibits a very low specific binding capacity for avidin (on the order of 0.15 pmol of avidin/cm2) and substantial nonspecific adsorption. Both the binding capacity and the specificity were greatly improved when the 3-APTMS layer on quartz was modified through serial chemisorption of glutaraldehyde (GA), DADOO, and/or G4-NH2 PAMAM dendrimer layers. Among these layers, the biotinylated G4-NH2 PAMAM dendrimer layer exhibited the highest capacity for avidin binding (2.02 pmol of avidin/cm2) with a specificity of approximately 90%. This effect can be attributed to the efficient packing/ordering of the binding dendrimer layer, leading to a more dense and better organized layer of biotin headgroups on the subsequent biotinylated surface.  相似文献   

6.

Hydrogels for this study were prepared from a mixture of PVA and CMC using three different techniques, i.e., freezing and thawing, electron‐beam irradiation or combined freezing and thawing and electron beam irradiation. A comparative study between the three techniques was carried out in terms of gel fraction (%) and swelling (%). It was found that the physical properties of the hydrogel were improved when the combination of freezing and thawing and irradiation were used rather than just freezing and thawing, or irradiation only. The effects of temperature and soil fertilizers on swelling (%) were examined to evaluate the usefulness of the hydrogel as a super absorbent in the soil. It was found that the swelling ratio increased as the composition of CMC increased in the blend. Hence, the blend having the composition 80/20 (CMC/PVA) was used as a super absorbent in the soil for agriculture. Moreover, the water retention increased in the soil containing this hydrogel. Thus, this type of hydrogel can be used to increase water retention in desert regions.  相似文献   

7.
Collagen, though widely used as a core biomaterial in many clinical applications, is often limited by its rapid degradability which prevents full exploitation of its potential in vivo. Polyamidoamine (PAMAM) dendrimer, a highly branched macromolecule, possesses versatile multiterminal amine surface groups that enable them to be tethered to collagen molecules and enhance their potential. In this study, we hypothesized that incorporation of PAMAM dendrimer in a collagen matrix through cross-linking will result in a durable, cross-linked collagen biomaterial with free -NH 2 groups available for further multi-biomolecular tethering. The aim of this study was to assess the physicochemical properties of a G1 PAMAM cross-linked collagen matrix and its cellular sustainability in vitro. Different amounts of G1 PAMAM dendrimer (5 or 10 mg) were integrated into bovine-derived collagen matrices through a cross-linking process, mediated by 5 or 25 mM 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) in 5 mM N-hydroxysuccinimide (NHS) and 50 mM 2-morpholinoethane sulfonic acid buffer at pH 5.5. The physicochemical properties of resultant matrices were investigated with scanning electron microscopy (SEM), collagenase degradation assay, differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectra, and ninhydrin assay. Cellular sustainability of the matrices was assessed with Alamar Blue assay and SEM. There was no significant difference in cellular behavior between the treated and nontreated groups. However, the benefit of incorporating PAMAM in the cross-linking reaction was limited when higher concentrations of either agent were used. These results confirm the hypothesis that PAMAM dendrimer can be incorporated in the collagen cross-linking process in order to modulate the properties of the resulting cross-linked collagen biomaterial with free -NH 2 groups available for multi-biomolecular tethering.  相似文献   

8.
Summary: glutaraldehyde cross-linked macroporous chitosan microspheres (CS) were prepared by inverse phase suspension reaction with sugar as porogenic agent. The microspheres were modified with different reagents of 1, 6 hexanediamine (HDA) and low generation polyamidoamine (PAMAM) dendrimers including PAMAM G1.0, PAMAM G2.0, PAMAM G3.0. The content of amino groups on CS, CS-PAMAM G1.0, CS-PAMAM G2.0, CS-PAMAM G3.0, CS-HDA was 3.56, 5.10, 5.47, 6.47, 4.66 mmol/g, respectively. The bilirubin adsorption on the above five microspheres was carried out in 0.05M phosphate buffer solution (pH = 7.2–7.4) at 37 °C. The results indicated all the modified CS microspheres were better than unmodified CS microspheres for bilirubin adsorption. CS-HDA has the best adsorption property even if the content of the amino groups was not very high.  相似文献   

9.
聚 (N -异丙基丙烯酰胺 ) (PNIPA)水凝胶具有温度敏感性 ,其在 33℃左右有一个相转变温度或较低临界溶解温度 (L CST) [1,2 ] .当外界温度低于 LCST时 ,PNIPA水凝胶吸水溶胀 ;而当外界温度高于L CST时 ,PNIPA水凝胶剧烈收缩失水 ,发生相分离 .这种相分离特性应用于药物的控制释放 [3] .固定化酶[4 ] 和循环吸收剂 [5] 等领域 .然而 ,通常的 PNIPA水凝胶是通过化学键交联而成的三维网络聚合物 ,很难发生解体或进行生物降解 ,其在某些特定场合 (如药物的体内释放等 )受到一定限制 .聚乙烯醇 (PVA)的亲水性和生物相容性较好 ,是…  相似文献   

10.
The aim of this paper is to present the behaviour of the poly(vinyl alcohol) hydrogels [PVA-HG] in sodium and potassium chlorides aqueous solutions, due to their interactions. The tested [PVA-HG]-s have been obtained by repeated freezing and thawing cycles. White, heterogeneous hydrogels have been obtained. These hydrogels exhibit a mechanical active behaviour at their contact with electrolytes aqueous solutions, manifested by important changing in mass, volume and density of the hydrogel samples. These modifications could be explained by water elimination from the hydrogels that initially reached the equilibrium of swelling. The kinetic of the water desorption and the reversibility of this process, have been studied and some of the factors that influence this behaviour have been evidenced. The sensitivity of PVA hydrogels to electrolyte nature and concentration could be used in sensors design and also could explain some aspects of electrolytes diffusion through PVA membranes and targeted drugs delivery.  相似文献   

11.
将线性聚(N-异丙基丙烯酰胺)(PNIPAAm)和海藻酸钠(SA)分子同时引入到PNIPAAm凝胶中,制备了交联聚(N-异丙基丙烯酰胺)/(海藻酸钠/聚(N-异丙基丙烯酰胺))半互穿网络(Cr-PNIPAAm/(SA/PNIPAAm)semi-IPN)水凝胶。在弱碱性条件下(pH=7.4),改变SA与线性PNIPAAm的质量比对Cr-PNIPAAm/(SA/PNIPAAm)semi-IPN水凝胶的溶胀度没有太大的影响。在酸性条件下(pH=1.0),其溶胀度随着SA与线性PNIPAAm质量比的减小而增大。由于亲水性SA与线性PNIPAAm的协同作用,Cr-PNIPAAm/(SA/PNIPAAm)semi-IPN水凝胶的消溶胀速率得到很大提高。  相似文献   

12.
A series of thermosensitive and fast-response poly(vinyl alcohol) (PVA)/poly(N-isopropylacrylamide) (PNIPA) hydrogels were prepared by incorporating PVA into cross-linked PNIPA to form a semi-interpenetrating polymeric network (semi-IPN). Compared to the conventional PNIPA hydrogel, the semi-IPN hydrogels thus prepared exhibit significantly faster response rates and undergo full deswelling in 1 min (lose about 95% water within 1 min) when the temperature is raised above their lower critical solution temperature, and have larger equilibrium swelling ratios at room temperature. These improved properties are attributed to the incorporation of PVA, which forms water-releasing channels and results in increased hydrophilicity, into the PNIPA hydrogel networks.  相似文献   

13.
Theophylline hydrogels of atactic‐poly(vinyl alcohol) (a‐PVA)/H2O and a‐PVA/NaCl/H2O systems were prepared followed by cyclic freezing (?30°C for 16 hr)–thawing (at room temperature for 8 hr) and one cycle gelation (at ?20°C for 24 hr) processes, respectively. In order to prepare xerogels (dried hydrogels) of these hydogel systems, an apparently first‐order mass transfer phenomenon of water as evaporation was observed for a‐PVA/H2O hydrogel system, while heating at 60°C. The rate of evaporation decreased with increasing time in hyperbolic fashion. The total surface area (both lateral and two end surfaces of hydrogel matrix disc) decreased linearly for the first 90 min and thereafter had a tendency towards the steady‐state. The total mass flux showed time dependent linear reduction phenomenon, which is a characteristic physical behavior for these hydrogel systems on heat treatment. When NaCl was included in a‐PVA/H2O system mass transfer of water followed fourth‐order polynomial. But in consideration of a comparative study, sustained mass transfer was found from the hydrogel matrices of a‐PVA/H2O/NaCl system (gelation at ?20°C). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
A novel dual phase concomitant, methylcellulose sol@poly(vinyl alcohol) (MC/PVA) hydrogel, was prepared via physical mixing and subsequent freezing/thawing. MC/PVA hydrogel was stable within a wide temperature range, and exhibited reversible thermoresponsivity. The initial sol-gel transition temperatures of MC/PVA hydrogels containing 40, 45 and 50 wt% MC were 45.9, 42.0 and 45.5 °C, respectively. It was found that the crystallinity of these samples was 41.1%, 38.3% and 40.3%, respectively; all of them were lower than that of MC and PVA. The thermal responding rates of MC/PVA hydrogel composed of 30, 40, 45 and 50 wt% MC were about 2.85, 3.17, 5.74 and 8.58%/min, respectively. The fluorescence micrograph and scanning electron microscopy of MC/PVA hydrogel revealed that the micro MC sol phases were dispersed in whole PVA network. Moreover, the thermal transition behavior and interior morphology of MC/PVA hydrogel could be tailored with its composition.  相似文献   

15.
We introduce a cationic polyamidoamine (PAMAM) dendrimers and tetronic (Te) based hydrogels in which precursor copolymers were prepared with simple methods. In the synthetic process, tyramine-conjugated tetronic (TTe) was prepared via activation of its four terminal hydroxyl groups by nitrophenyl chloroformate (NPC) and then substitution of tyramine (TA) into the activated product to obtain TTe. Cationic PAMAM dendrimers G3.0 functionalized with p-hydroxyphenyl acetic acid (HPA) by use of carbodiimide coupling agent (EDC) to obtain Den-HPA. 1H-NMR confirmed the amount of HPA and TA conjugations. The aqueous TTe and Den-HPA copolymer solution rapidly formed the cationic hydrogels in the presence of horseradish peroxidase enzyme (HRP) and hydrogen peroxide (H2O2) at physiological conditions. The gelation time of the hydrogels could be modulated ranging from 7 to 73 secs, when the concentrations of HRP and H2O2 varied. The hydrogels exhibited minimal swelling degree and low degradation under physical condition. In vitro cytotoxicity study indicated that the hydrogels were highly cytocompatible as prepared at 0.15 mg/mL HRP and 0.063 wt% of H2O2 concentration. Heparin release profiles show that the cationic hydrogels can sustainably release the anionic anticoagulant drug. The obtained results demonstrated a great potential of the cationic hydrogels for coating medical devices or delivering anionic drugs.  相似文献   

16.
聚乙烯醇水凝胶溶胀特性研究   总被引:30,自引:0,他引:30  
在前文对聚乙烯醇水溶液冰冻凝胶化浓度依赖性研究基础上,对接触浓度(C)以上聚乙烯醇水溶液通过冰冻-融化处理,制得了一种含水率高达95~98%的水凝胶.系统研究了该水凝胶在蒸馏水中的溶胀及溶解特性.得到了一个与实验结果相吻合的溶胀动力学方程:Q1=Qe-(Qe-QO)/ekt,及平衡溶胀比Qe与浓度之间的定量关系:Qe=60.3-4.45×102C.发现当冰冻-融化次数N≤5时,平衡溶胀比Qe及溶解量W与冰冻-融化次数(N)间满足幂函数关系:Qe。W通过对聚乙烯醇水凝胶平衡溶胀比与经冰冻处理的聚乙烯醇水溶液特性粘数进行比较,发现反映链间氢键凝聚缠结效应与反映链内氢键凝聚缠结效应的定量指标具有等效性.  相似文献   

17.
This study reports the preparation of poly(sodium-4-styrene sulfonate) (PSS) treated bentonite and clinoptilolite to prevent the agglomeration and sedimentation of these inorganic fillers during the preparation of hydrogel. For this purpose PSS treated fillers were prepared by using various techniques (dip and dry, hydrothermal, one-step ball milling and ultrasonication methods). The most suitable technique for preparing these PSS treated inorganic fillers (abbreviated as BP-dip and CP-dip) was the dip and dry method. BP-dip and CP-dip based polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) composite hydrogels were prepared using the freeze/thawing method after the addition of one of BP-dip and CP-dip inorganic fillers in various amounts. The swelling properties, stability behaviors and Rhodamine B (RhB) adsorption of the composite hydrogels were studied. It was found that the swelling degrees of CP-dip and BP-dip based composite hydrogels with 25 mg of filler were higher than that of all other samples. The kinetic mechanism of RhB adsorption process and the related characteristic kinetic parameters were investigated by Pseudo kinetic models. The adsorption kinetics results for RhB adsorption were found best fitted with pseudo-second-order kinetics model. The maximum RhB adsorption capacity was determined to be for PVA/PVP-CP-dip25, which was 3.3 times higher than that of the unfilled PVA/PVP hydrogel.  相似文献   

18.
树状大分子聚酰胺-胺的合成及对药物分子增溶性能研究   总被引:2,自引:1,他引:2  
采用发散法合成了以乙二胺为核的1.0~3.0树状大分子聚酰胺-胺(PAMAM).采用红外光谱和核磁共振对PAMAM的结构进行了表征,并考察了不同pH值、不同浓度的PAMAM对难溶药物布洛芬的增溶能力.结果表明:PAMAM较十二烷基苯磺酸钠(SDS)对布洛芬有较强的增溶能力,增溶量随PAMAM浓度增加而增大,其增溶机理是由于PAMAM的氨基与布洛芬的羧基之间存在静电作用.  相似文献   

19.
Poly(vinyl alcohol) (PVA) was blended with sodium alginate (Alg) in various ratios and crosslinked with calcium chloride and made into hydrogel membranes. The dependence of the swelling behavior of these Alg‐Ca/PVA hydrogels on pH was investigated. The temperature‐dependent swelling behavior of the semi‐interpenetrating network (semi‐IPN) hydrogels was examined at temperatures from 2 to 45°C and the enthalpy of mixing (ΔHmix) was determined at various temperatures. The molecular structure of the hydrogels was studied by infrared spectroscopy and their water structure in the semi‐IPN hydrogels was measured by differential scanning calorimetry (DSC). The influence of Ca2+ content on the network structure of Alg‐Ca/PVA hydrogels was investigated in terms of the compressive elastic modulus, effective crosslinking density, and the polymer–solvent interaction parameter based on the Flory theory. The loading of alizarin red S (ARS) followed the Langmuir isotherm mechanism and the release kinetics of ARS from the Alg‐Ca/PVA hydrogels followed the Fickian diffusion mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
PVA-PAMPS-PAA三元互穿网络型水凝胶的合成及其性能研究   总被引:4,自引:0,他引:4  
以2-丙烯酰胺基-2-甲基丙磺酸(AMPS)、丙烯酸(AA)以及聚乙烯醇(PVA)为原料,制备了PVA-PAMPS-PAA三元互穿网络型(T-IPN)水凝胶.红外分析表明,PVA与PAA以及PAMPS之间形成了较强的氢键,使得PVA分子上的C—O伸缩震动吸收峰移向了低波数处.X射线衍射以及电镜分析表明,当PVA用量较低时,PVA能均匀的穿插于凝胶网络中,形成完善的互穿网络结构,当PVA用量过高时,部分的PVA结晶而使得凝胶出现相分离.研究了该三元互穿网络型水凝胶的溶胀性能,结果表明,该水凝胶的平衡溶胀比在200至340之间,并且随着AA以及AMPS用量的增加,凝胶的溶胀速率以及平衡溶胀比均升高.该三元互穿网络型水凝胶在酸性溶液中和在碱性溶液中表现出截然不同的消溶胀性能;并且随着溶液pH的升高,凝胶在pH=9.0附近出现体积突变,表现出pH敏感性.通过研究T-IPN水凝胶的抗压缩性能发现,利用线型高分子、柔性高分子网络以及刚性高分子网络制备的三元互穿网络型水凝胶能在高溶胀比下保持较高的强度.溶胀比为180的T-IPN水凝胶,其最大抗压缩强度可达12.1 MPa.进一步研究发现,凝胶的组成以及溶胀比均对凝胶的抗压缩强度和压缩应变均存在较大的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号