首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The real-time changes in viscoelasticity of adsorbed poly(L-lysine) (PLL) and adsorbed histone (lysine rich fraction) due to cross-linking by glutaraldehyde and corresponding release of associated water were investigated using a quartz crystal microbalance with dissipation monitoring (QCM-D) and attenuated total reflection Fourier transform infrared spectroscopy (ATR/FTIR). The kinetics of PLL and histone adsorption were measured through changes in mass adsorbed onto a gold-coated quartz surface from changes in frequency and dissipation and using the Voigt viscoelastic model. Prior to cross-linking, the shear viscosity and shear modulus of the adsorbed PLL layer were approximately 3.0 x 10(-3) Pas and approximately 2.5 x 10(5) Pa, respectively, while after cross-linking, they increased to approximately 17.5 x 10(-3) Pas and approximately 2.5 x 10(6) Pa, respectively. For the adsorbed histone layer, shear viscosity and shear modulus increased modestly from approximately 1.3 x 10(-3) to approximately 2.0 x 10(-3) Pas and from approximately 1.2 x 10(4) to approximately 1.6 x 10(4) Pa, respectively. The adsorbed mass estimated from the Sauerbrey equation (perfectly elastic) and the Voigt viscoelastic model differ appreciably prior to cross-linking whereas after cross-linking they converged. This is because trapped water molecules were released during cross-linking. This was confirmed experimentally via ATR/FTIR measurements. The variation in viscoelastic properties increased substantially after cross-linking presumably due to fluctuation of the randomly cross-linked network structure. An increase in fluctuation of the viscoelastic properties and the loss of imbibed water could be used as a signature of the formation of a cross-linked network and the amount of cross-linking, respectively.  相似文献   

2.
Novel layer-by-layer (LbL) assembly films composed of poly( L-lysine) (PLL) and poly( D-lactic acid) (PDLA) were prepared by the alternate immersion of a gold substrate into an aqueous PLL solution and an acetonitrile solution of PDLA. The formation of the LbL assembly film was confirmed by quartz crystal microbalance (QCM) analysis, atomic force microscopy observation, and attenuated total reflection Fourier transform infrared spectroscopy measurement. The driving force responsible for the LbL assembly was determined by investigating the formation behavior of the LbL assembly under various conditions. The formation of the LbL assembly was not affected either by the stereochemistry of polylysine and poly(lactic acid) or by the addition of urea, which is known to inhibit hydrogen bonding interaction between polymers, into the aqueous PLL solution. The LbL assembly was also formed by the combination of PDLA and polycations other than polylysine, such as poly(diallyldimethylammonium chloride). On the other hand, the combination of PDLA and any polyanions such as poly(styrene sulfonate sodium salt) produced little corresponding LbL assembly. The increase in positive charge on the amino nitrogen atom of PLL enhanced the LbL assembly. These results suggest that the LbL assembly film composed of PLL and PDLA was fabricated by cation-dipole interactions between the positive charge on the amino nitrogen atom of PLL and the lone pairs of the carbonyl oxygen atom of PDLA.  相似文献   

3.
申有青 《高分子科学》2016,34(1):94-103
Chirality is a key factor in the biological activity of many biomolecules. Poly(L-lysine)(PLL), a polypeptide synthesized from L-lysine, is one of the mostly used cationic polymers for gene delivery. The effect of chirality of polylysine(PL) on its gene delivery remains unknown. Herein, we prepared three polylysines(PLs) with the similar molecular weight but different backbone chiralities including poly(L-lysine)(PLL), poly(D-lysine)(PDL) and poly(DL-lysine)(PDLL). The side chains of each PL were modified with propylene oxide(PO) of different chiralities including(R)PO,(S)PO and(R,S)PO. These PL-POs with distinct chirality in main and side chains could condense p DNA into polyplexes. The polyplexes had approximately the same size, zeta potential and binding ability, but showed distinct gene transfection efficiency. We found that the PLs of L-configuration in the main chain had higher transfection efficiency than that of D or DL configuration due to their faster cellular uptake, while the side chain chirality had no effect on transfection efficiency.  相似文献   

4.
Summary: Two chiral polyelectrolyte multilayers (PEM) composed of poly(L-lysine) (PLL) and poly(vinylsulfate) (PVS) as well as poly(ethyleneimine-maltose) (PEI-m) and poly(vinylsulfate) and a nonchiral PEM composed of poly(ethyleneimine) (PEI) and poly(vinylsulfate) were deposited on a silica surface using the layer by layer method. For both PEM enantiospecific interaction towards one enantiomer of either L-/D- glutamic acid (L-/D-GLU) or L-/D-ascorbic acid (L-/D-ASC), respectively, was checked under variation of the concentration. Both deposition and enantiospecific interaction were studied by attenuated total reflection Fourier transform (ATR-FTIR) spectroscopy. Preliminary results show a significant enantiospecific preference of D- GLU over L-GLU at PEM of PLL/PVS and of D-ASC over L-ASC at PEM of PEI-m/PVS and no such preference for nonchiral PEM of PEI/PVS. PEM of PLL/PVS shows higher enantiospecifity with increasing L-/D-GLU concentration.  相似文献   

5.
动态力学分析技术(DMA)是研究聚合物性能的重要方法之一.动态力学实验可以检测聚合物的玻璃化转变温度和次级松弛过程,直接与聚合物的链结构和聚集态结构密切相关,聚合物的化学组成、支化和交联、结晶和取向、增塑和共混等结构因素的变化,都与分子运动状态的变化密切相关,而分子运动的变化又能灵敏地反映在动态力学性能上,  相似文献   

6.
Cellulose-derived materials are usually characterized by sophisticated structures, leading to unique and multiple functions, which have been a source of inspiration for the fabrication of a wide variety of nanocomposites. Cellulose nanocrystals/poly(acrylamide) (CNCs/PAM) nanocomposite hydrogels were synthesized via in situ polymerization in the CNC suspension. The cellulose from pulp fiber under different sulfuric acid hydrolysis conditions, examined by conductometric titration and transmission electron microscopy, was applied to study how the effects of the surface charge and aspect ratio affect CNCs’ mechanical reinforcement in nanocomposites. The results indicated that the higher surface charge concentration resulted in better dispersibility in aqueous suspension, leading to a more efficient energy dissipation process. The CNC reinforcement behavior followed the percolation model where the greater aspect ratio of CNC contributed to higher mechanical properties. The preferential adsorption of poly(ethylene glycol) (PEG) on the CNC surface was characterized by zeta potential measurements where the fracture strength and fracture elongation of nanocomposites decreased with increasing PEG concentration. The adsorption of PEG on the CNC surface occupied the active sites for polymer chain propagation, which hindered the PAM cross-linking effect on the CNC surface and decreased the cross-linking density of the network.  相似文献   

7.
Chemical cross-linking is the standard approach to tune the mechanical properties of polymer coatings for cell culture applications. Here we show that the elastic modulus of highly swollen polyelectrolyte films composed of poly(L-lysine) (PLL) and hyaluronic acid (HA) can be changed by more than 1 order of magnitude by addition of gold nanoparticles (AuNPs) in a one-step procedure. This hydrogel-nanoparticle architecture has great potential as a platform for advanced cell engineering application, for example remote release of drugs. As a first step toward utilization of such films for biomedical applications we identify the most favorable polymer/nanoparticle composition for optimized cell adhesion on the films. Using atomic force microscopy (AFM) we determine the following surface parameters that are relevant for cell adhesion, i.e., stiffness, roughness, and protein interactions. Optimized cell adhesion is observed for films with an elastic modulus of about 1 MPa and a surface roughness on the order of 30 nm. The analysis further shows that AuNPs are not incorporated in the HA/PLL bulk but form clusters on the film surface. Combined studies of the elastic modulus and surface topography indicate a cluster percolation threshold at a critical surface coverage above which the film stiffness drastically increases. In this context we also discuss changes in film thickness, material density and swelling ratio due to nanoparticle treatment.  相似文献   

8.
Three types of multilayer films made from poly(L-lysine)/hyaluronan, chitosan/hyaluronan, and poly(allylamine hydrochloride)/poly(L-glutamic acid), were used to investigate the interplay between film mechano-chemical properties and cell adhesion. We showed that C2C12 myoblast adhesion and proliferation depended on the extent of film cross-linking for all films whatever their internal chemistry. Cell spreading areas were found to correlate with the film's stiffness and to be distributed over a unique curve. Immuno-staining of the cytoskeletal components revealed the formation of F-actin stress fibers and vinculin plaques only on stiff films. Finally, we compared our results with previous studies performed on polyacrylamide and PDMS gels, two recognized materials for mechano-sensitivity studies. We found that the effect of substrate stiffness on cell spreading is material-dependent.  相似文献   

9.
冯增国 《高分子科学》2013,31(2):251-562
 Self-healing poly(urea-urethane)s (PUUs) showing a tolerance to mechanical damage are particularly desirable for high-performance elastomeric biomaterials. In this study a kind of biodegradable PUUs was synthesized from poly(ε-caprolactone) diol with L-lysine ethyl ester diisocyanate (LDI) extended with L-lysine ethyl ester dihydrochloride (LEED) in DMF and characterized by using 1H-NMR, FTIR, DSC, XRD, SEM and tensile tests. Interestingly, they exhibited a self-healing characteristic upon exposure to 37℃ for as short as 30 min with the tensile strength keeping at 4.23 MPa and the elongation at break reaching to 627%. It is revealed that increasing the hard segment content in PUUs benefits the self-healing performance, and on the opposite increasing the soft segment content contributes to the biodegradability.  相似文献   

10.
《先进技术聚合物》2018,29(1):310-318
In this work, high‐performance fibers such as aramid (Twaron), polyamide (PA6), polyester (PET), and hybrid Twaron/PA6 fibers were transformed into electroactive fibers by coating them with conjugated polymer, poly(3,4‐ethylenedioxythiophene) (PEDOT) through vapor phase polymerization (VPP) method. The VPP is considered as an efficient technique for depositing CPs on different substrates regardless of their lower solubility in various solvents. In this paper, PEDOT‐coated high‐performance fibers were prepared under already optimized reaction conditions, and then a comparison between electrical, thermal, and mechanical properties of different fibers, before and after coating, was made. The obtained coated fibers were characterized through scanning electron microscope (SEM), thermogravimetric analysis (TGA), 2‐probe electrical resistance measurement method, and tensile testing. It was revealed that at particular reaction conditions, all high performance textile substrates were successfully converted into electroactive fibers. The voltage‐current (V‐I) characteristics showed that PEDOT‐coated polyester fibers exhibited highest conductivity value among all other substrate fibers. The active PEDOT layers on high performance fibers could behave as an antistatic coating to minimize the risks associated with static charges at work places. Also, the obtained fibers have potential to be used as smart materials for various medical, sports, and military applications.  相似文献   

11.
Natural protein fibers, such as silk, having high‐performance characteristics have been important materials in biopolymer research. This article reports the development of a silk‐like extensible poly(α,L ‐amino acid) fiber inspired by self‐assembly of polypeptides in living systems. Electrostatic interaction was employed as the driving force for building the fiber, and we succeeded in spinning the fiber from an aqueous solution interface between poly(α,L ‐lysine) (PLL) and poly(α,L ‐glutamic acid) (PLG). When the PLL/PLG fiber was formed, the conformations of PLL and PLG were changed from random to β‐structures. A remarkable feature of the PLL/PLG fiber is the high extensibility. Mechanical stretching of the PLL/PLG fiber resulted in a change from an extensible fiber to a rigid and strong fiber. These features depend on the molecular conformation and the deviation in the amino acid composition of the PLL/PLG fibers. This concept and the poly(α,L ‐amino acid) fibers themselves allow the production of new protein fibers and aid the development of the science of protein folding as well as giving insight into the noncovalent interactions involved in self‐assembly.

SEM micrograph showing that the surface of the stretched fiber is smooth.  相似文献   


12.
In this work, cationic block copolymer (F-68-PLL) composed of Pluronic F-68 and poly(L-lysine) segments was first prepared for the binding with plasmid DNA due to the electrostatic interaction between poly(L-lysine) segments and plasmid DNA, and subsequently used to interact with α-cyclodextrin (α-CD) in aqueous system for the supramolecular gelation by the inclusion complexation between Pluronic F-68 segments and α-CD. It was found that such a fabrication process could lead to the in situ entrapment of plasmid DNA into the supramolecular hydrogel matrix under mild conditions. Depending on the amounts of F-68-PLL and α-CD, the resultant hybrid hydrogel was found to have adjustable gelation time and mechanical strength. For the plasmid DNA complexes released from the supramolecular hydrogel, controlled release and sustained gene transfection were confirmed.  相似文献   

13.
Cationic polymers bind DNA and form compacted nanoparticulates (i.e., polyplexes). Polyplexes augment DNA delivery into the cells as a nonviral method of gene therapy. DNA packing and release are the key factors in polyplex-mediated gene delivery, but they are poorly understood due to the lack of physical methods of investigation. We used time-resolved fluorescence spectroscopy to study poly(ethylenimine) (PEI) and poly(L-lysine) (PLL) polyplexes. Analysis of fluorescence lifetimes and time-resolved spectra revealed that DNA exists in several different states in PEI polyplexes and only in one tightly bound state in PLL polyplexes. The observed difference in the nature of the polyplexes may explain why PEI releases DNA more easily than PLL even though both polycations condense DNA effectively. The present method utilizing time-resolved fluorescence spectroscopy gives information on the specific interactions between DNA and the cationic polymers in the polyplexes. This kind of information is very important in the development of biologically effective nonviral systems for DNA delivery.  相似文献   

14.
The aims of this paper are three-fold. The first is to determine the reinforcement of high performance short aramid fiber in two representative rubber matrices, namely natural rubber and acrylonitrile rubber. The second is to ascertain the effect of rubber polarity on the reinforcement. The third is to establish a pattern of reinforcement for use with less studied fibers. The rubbers were reinforced either with only aramid fiber or with a hybrid of aramid fiber and carbon black. The fiber contents were varied at 0, 2, 5 and 10 parts (by weight) per hundred rubber (phr) while those of carbon black were 0, 10, 20 and 30 phr. Conventional sulfur vulcanization was used. It was found that aramid fiber can reinforce both rubbers in the low strain region effectively, although to a significantly different degree. The hybrid carbon black provides additional reinforcement at low to medium strains and allows high strain stress upturn to occur in both rubber matrices. The findings enable the preparation of rubber composites having a wide, controllable range of mechanical behavior for specific high-performance engineering applications. Significantly, they also serve as a benchmark for developing reinforced systems from alternative fibers, particularly those from natural sources.  相似文献   

15.
This paper reports the pH-induced structural changes in the surface immobilized poly(L-lysine)(PLL)film.Two-dimensional(2D) correlation analysis was applied to the Fourier transform infrared(FTIR)spectra of the surface-immobilized PLL film to examine the spectral changes induced by the alternations of the protonation state of the amino group in the side chain.Significant spectral changes in the FTIR spectra of the PLL film were observed between pH 7 and 8.The decrease in the protonation state of the amino group in the side chain induced spectral changes in the amino group as well as conformational changes in the alky]group in the side chain.From pH 1-8,the spectral changes in the amino and alkyl groups in the side chain occurred before those of the amide group in the main chain of the surface immobilized PLL film.  相似文献   

16.
The buildup of poly(L-glutamic acid) (PGA) and poly(L-lysine) (PLL) multilayers on beta-FeOOH colloidal particles was investigated by means of electro-optics and electrophoresis. The films were built at different (acidic) pH in the absence of salt. We found that the thickness of the film grows linearly when the fully charged PLL (at pH 5.5) is combined with almost fully charged PGA (at pH 6.5), with a thickness of about 2 nm per single layer. When the fully charged PLL is combined with weakly charged PGA (at pH 4.5), the film thickness increases exponentially with the number of deposited layers. The thickness of the exponentially growing film increases to 300 nm after deposition of 16 layers. The exponential film growth is attributed to the ability of the PLL to diffuse "in" and "out" of the film bulk at each deposition step. The variation in the electrical polarizability of the film-coated particles was also monitored as a function of the number of adsorbed layers. The result reveals that the PLL chains, which can diffuse into the film bulk, have no measurable contribution to the electro-optical effect of the films terminated with PLL. It is only due to the polarization of counterions of the PLL adsorbed on the film surface.  相似文献   

17.
This study demonstrates the preparation of a renewable and biocompatible co-cross-linked nanocomposite hydrogel from poly(methyl vinyl ether-co-maleic acid), poly(ethylene glycol) and nanofibrillated cellulose (NFC). The cross-linking reaction was favored by the formation of ester linkages as evidenced by Fourier transform infrared spectroscopy. The increase in gel fraction content of the treated NFC varied from 22 to 85 % which exhibited an increase in degree of chemical cross-linking to form a rigid network with the addition of varying amount of NFC (20–60 %). This increase in gel rigidity influenced gel swelling, showing relatively reduced water uptake ability above 40 % NFC. Rheological measurements indicated the formation of gels with superior mechanical properties.  相似文献   

18.
Thermally reversible polyesters were obtained by the ester formation reaction of thermoplastic polyesters with hydroxyl end groups and the diacid anhydride of tetra carboxylic acid as a thermally reversible chain extender. Typical example of the thermally reversible polyesters was obtained by the reaction of PBT (polyburylene terephthalate) and PMA (pyromellitic dianhydride). This material having twice as large molecular weight as the original PBT exhibited almost the same melt viscosity as the original. Also that thermally reversible chain extension reaction occurred without unfavorable side reaction such as cross-linking. This material shows both good processability and superior mechanical properties due to its thermally reversible characters.  相似文献   

19.
Stimuli-sensitive polymers were synthesized by copolymerizing varying ratios of N-isopropyl acrylamide(NIPAAm) and acrylic acid(AAc). The influence of polyelectrolytes on the lower critical solution temperatures(LCSTs) of these temperature/pH sensitive polymers was investigated in the pH range of 2-12. Polyelectrolyte complexes were prepared by mixing poly(NIPAAm-co-AAc) as anionic polyelectrolyte with poly(allyl amine)(PAA) or poly(L-lysine)(PLL) as cationic polyelectrolytes, respectively. Back titration was performed to determine the pKa values of PAAc in poly(NIPAAm-co-AAc) and to study the effect of comonomer ionization on the cloud point temperature. The effect of polyelectrolyte complex formation on the conformation of PLL was studied as a function of temperature by means of circular dichroism(CD). The swelling ratio of poly(NIPAAm-co-AAc) hydrogels as a function of pH at various temperature was obtained by measuring the weight of the hydrogels in buffer solutions. The LCSTs of the poly(NIPAAm-co-AAc) were strongly affected by pH, polyelectrolyte solutes, AAc content, and charge density. The influence of more hydrophobic PLL as a polyelectrolyte on the cloud point of PNIPAAm/water in the copolymer was stronger than that of poly(allyl amine)(PAA). Indomethacin was loaded into these hydrogels, and controlled release of this molecule from the hydrogel was determined under various temperature and pH conditions using UV/Vis spectrophotometry.  相似文献   

20.
A cationic polysaccharide bearing a beta-1,3-glucan main-chain structure (CUR-N(+)) forms a complex with a hetero-sequence oligonucleotide, that is, a CpG ODN, and facilitates the transportation of the resultant complex into a murine macrophage-like cell J774.A1, which induces an efficient secretion of a cytokine (IL-12) as compared with that induced by conventional carriers such as poly(ethyleneimine) (PEI) and poly(L-lysine) (PLL).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号