首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gel formation was discovered in an aqueous mixture of enantiomeric triblock copolymers, PLLA‐PEG‐PLLA and PDLA‐PEG‐PDLA. This system is characteristic in that an interesting sol–gel transition was induced by the stereo‐complexation of the PLLA and PDLA segments of the block copolymers around 37°C. The process of gel formation was clearly monitored by the rheological change, and the responsibility of the stereo‐complex formation for the gelation was confirmed by wide‐angle X‐ray scattering. The mechanism of this gel formation is discussed in relation to its potential applications.  相似文献   

2.
Ring-opening polymerization of L(D)-lactide was realized in the presence of poly(ethylene glycol) (PEG), yielding PLLA/PEG and PDLA/PEG block copolymers. Bioresorbable hydrogels were prepared from aqueous solutions containing both copolymers due to interactions and stereocomplexation between PLLA and PDLA blocks. The rheological properties of the hydrogels were investigated under various conditions by changing copolymer concentration, temperature, time and frequency. The hydrogels constitute a dynamic and evolutive system because of continuous formation/destruction of crosslinks and degradation. Drug release studies were performed on hydrogel systems containing bovine serum albumin (BSA). The release profiles appear almost constant with little burst effect. The release rate depends not only on gelation conditions such as time and temperature, but also on factors such as drug load, as well as molar mass and concentration of the copolymers.  相似文献   

3.
A series of thermoresponsive double hydrophilic (AB)(n) multiblock and ABA triblock copolymers of N,N-dimethylacrylamide (DMA) and N-isopropylacrylamide (NIPAM) with varying sequence lengths were synthesized via successive reversible addition-fragmentation chain transfer (RAFT) polymerizations by employing polytrithiocarbonate as the chain transfer agent. Previously, we reported that multiblock copolymers in dilute aqueous solutions can form either unimolecular or multimolecular micelles at elevated temperatures depending on the relative chain lengths of PDMA and PNIPAM sequences (Zhou et al. Langmuir 2007, 23, 13076-13084). In this follow-up work, we further explored and compared the chain architectural (multiblock vs triblock) and Hofmeister effects (addition of various sodium salts) on the gelation behavior of multiblock and ABA triblock copolymers at high concentrations and attempted to establish a correlation between the aggregation behavior and gelation properties of multiblock copolymers at low and high polymer concentrations, respectively. It was found that only m-PDMA(p)-PNIPAM(q) multiblock copolymers with PDMA and PNIPAM sequence lengths located within a specific range can form physical gels at elevated temperatures. Rheology measurements revealed that multiblock copolymers possess considerably lower critical gelation temperatures (CGT) and higher gel storage modulus, G'(gel), as compared to those of PNIPAM-b-PDMA-b-PNIPAM triblock copolymers possessing comparable sequence lengths. The addition of inorganic sodium salts can effectively facilitate thermogelling for multiblock and triblock copolymers, resulting in decreasing CGTs and critical gelation concentrations (CGCs) in the order of Hofmeister series with increasing hydration capabilities. The unique thermogelling behavior of aqueous multiblock copolymer solutions in the absence and presence of inorganic salts, as compared to that of ABA triblock copolymers, augurs well for their potential applications in various fields such as biomaterials and biomedicines.  相似文献   

4.
Linear and four‐armed poly(l ‐lactide)‐block‐poly(d ‐lactide) (PLLA‐b‐PDLA) block copolymers are synthesized by ring‐opening polymerization of d ‐lactide on the end hydroxyl of linear and four‐armed PLLA prepolymers. DSC results indicate that the melting temperature and melting enthalpies of poly (lactide) stereocomplex in the copolymers are obviously lower than corresponding linear and four‐armed PLLA/PDLA blends. Compared with the four‐armed PLLA‐b‐PDLA copolymer, the similar linear PLLA‐b‐PDLA shows higher melting temperature (212.3 °C) and larger melting enthalpy (70.6 J g?1). After these copolymers blend with additional neat PLAs, DSC, and WAXD results show that the stereocomplex formation between free PLA molecular chain and enantiomeric PLA block is the major stereocomplex formation. In the linear copolymer/linear PLA blends, the stereocomplex crystallites (sc) as well as homochiral crystallites (hc) form in the copolymer/PLA cast films. However, in the four‐armed copolymer/linear PLA blends, both sc and hc develop in the four‐armed PLLA‐b‐PDLA/PDLA specimen, which means that the stereocomplexation mainly forms between free PDLA molecule and the inside PLLA block, and the outside PDLA block could form some microcrystallites. Although the melting enthalpies of stereocomplexes in the blends are smaller than that of neat copolymers, only two‐thirds of the molecular chains participate in the stereocomplex formation, and the crystallization efficiency strengthens. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1560–1567  相似文献   

5.
The ABCBA pentablock copolymers (p-d -l -PPS) comprising poly(d -lactide) (PDLA: A), poly(l -lactide) (PLLA: B) and poly(propylene succinate) (PPS: C) were successfully synthesized by two-step ring-opening polymerization (ROP) of d - and l -lactide using a dihydroxy-terminated PPS as a macro-initiator. The pentablock copolymers revealed the high stereocomplex (sc) crystallinity, thermal stability and elastomeric property in their solution-cast films. It was found that the Tg was found to be proportional to the PPS content, whereas the Tm was proportional to their average block length. The thermal resistivity of the copolymer films was found to be as high as 202°C owing to their sc formation. The copolymers also showed improved stereocomplexibility compared to the enantiomeric mixtures of triblock copolymers (PLLA-PPS-PLLA and PDLA-PPS-PDLA) having similar PLLA and PDLA chain lengths. These pentablock copolymers can afford thermoplastic elastomers or flexible plastic materials having a 100% bio-based content, showing high heat-resistive property.  相似文献   

6.
Summary: Branched poly(L -lactide)-poly(ethylene glycol) (PLLA-PEG) block copolymers were synthesized from trifunctional PLLA and amine functionalized methoxy poly(ethylene glycol)s. The copolymers in water formed hydrogels that showed thermo-responsive behavior. The hydrogels underwent a gel to sol transition with increasing temperature as determined with the vial tilting method and oscillatory rheology. For all copolymers, the transition temperature increased with increasing copolymer concentration. The transition temperature of corresponding branched copolymers also increased with increasing PEG molecular weight, and surprisingly decreased with increasing molecular weight of the PLLA branches. In general, the gel-sol transition is explained by disruption of micellar or aggregate interactions because of partial dehydration and shrinkage of the PEG chains. An increase in the molecular weight of the PLLA branches led to the formation of micelles and aggregates as observed with DLS at low concentrations. It is speculated that the non-uniform size distribution and possible crystallization of longer PLLA blocks may have a negative effect on the formation of micellar packing upon gelation, allowing the disruption of micellar or aggregate interactions to occur at lower temperatures. The transition temperature of the gels could be tuned closely to body temperature by varying the concentration of the solution or the molecular weight of the PEG block and the PLLA blocks, which implies that these polymers may be used as injectable systems for in-situ gel formation.  相似文献   

7.
Ring-opening polymerization of D,L-lactide was carried out in the presence of monohydroxylated poly(ethylene glycol) (PEG) with Mn of 2000 and 5000, using zinc powder as catalyst. The resulting PEG-b-polylactide (PEG-PLA) diblocks with various ethylene oxide/lactyl (EO/LA) ratios were coupled with adipoyl chloride to yield PEG-PLA-PEG triblock copolymers. N-Dimethylaminopyridine (DMAP) was used as catalyst. The obtained PEG-PLA-PEG triblock copolymers were characterized by various analytical techniques such as IR, 1H NMR, size exclusion chromatography, X-ray diffraction, and differential scanning calorimetry. Data showed that all the copolymers were semicrystalline with the PEG-type crystalline structure, the crystallinity decreasing with increasing PLA block length. Bioresorbable hydrogels were prepared from the water-soluble triblock copolymers. Rheological measurements showed a gel-sol transition with increasing temperature and gelation was found to be thermoreversible. The copolymer solution behaves like a viscoelastic liquid above the gel point and like a viscoelastic solid below the gel point. The critical gelation concentration, the gel-sol transition temperature at a given concentration, and corresponding moduli depend on both the EO/LA ratio and the molecular weight of the copolymers. It is assumed that gelation results from interactions between PEG blocks at low temperatures and that these interactions are disrupted as the temperature is elevated. The shrinking of PEG blocks with increasing temperature seems to be in agreement with the variation of the gel-sol transition temperatures.  相似文献   

8.
A nucleation efficiency scale for isotactic poly(L ‐lactide) (PLLA) was obtained with self‐nucleation and nonisothermal differential scanning calorimetry experiments. The maximum nucleation efficiency occurred at the highest concentration of self‐nucleating sites, and the minimum efficiency occurred in the absence of these sites (pure PLLA polymer melt). Blends of PLLA and isotactic poly(D ‐lactide) (PDLA) led to the formation of a 1/1 stereocomplex. In comparison with the homopolymer (PLLA), the stereocomplex had a higher melting temperature and crystallized at higher temperatures from the melt. Small stereocomplex crystallites were formed in PLLA/PDLA blends containing low concentrations of PDLA. These crystallites acted as heterogeneous nucleation sites for subsequent PLLA crystallization. Using the PLLA nucleation efficiency scale, we evaluated a series of PLLA/PDLA blends (0.25–15 wt % PDLA). A maximum nucleation efficiency of 66% was observed at 15 wt % PDLA. The nucleation efficiency was largely dependent on the thermal treatment of the sample. The nucleating ability of the stereocomplex was most efficient when it was formed well before PLLA crystallization. According to the efficiency scale, the stereocomplex was far superior to talc, a common nucleating agent for PLLA, in its ability to enhance the rate of PLLA crystallization. In comparison with the PLLA homopolymer, the addition of PDLA led to reduced spherulite sizes and a reduction in the overall extent of PLLA crystallization. The decreased extent of crystallization was attributed to the hindered mobility of the PLLA chains due to tethering by the stereocomplex. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 300–313, 2001  相似文献   

9.
Stereoblock poly(lactic acid) (sb-PLA) is incorporated into a 1:1 polymer blend system of poly(L-lactic acid) (PLLA) and poly(D-lactic acid) (PDLA) that has a high molecular weight to study its addition effect on the stereocomplex (sc) formation of PLLA and PDLA. The ternary polymer blend films are first prepared by casting polymer solutions of sb-PLA, PLLA, and PDLA with different compositions. Upon increasing the content of sb-PLA in the blend films the sc crystallization is driven to a higher degree, while the formation of homo-chiral (hc) crystals is decreased. Lowering the molecular weight of the incorporated sb-PLA effectively increases the sc formation. Consequently, it is revealed that sb-PLA can work as a compatibilizer to improve the poor sc formation in the polymer blend of PLLA and PDLA.  相似文献   

10.
《先进技术聚合物》2018,29(1):632-640
The nanocompsites of star‐shaped poly(D‐lactide)‐co‐poly(L‐lactide) stereoblock copolymers (s‐PDLA‐PLLA) with two‐dimensional graphene nanosheets (GNSs) were prepared by solution mixing method. Crystallization behaviors were investigated using differential scanning calorimetry, polarized optical microscopy, and wide angle X‐ray diffraction. The results of isothermal crystallization behaviors of the nanocompsites clearly indicated that the GNS could remarkably accelerate the overall crystallization rate of s‐PDLA‐PLLA copolymer. Unique stereocomplex crystallites with melting temperature about 207.0°C formed in isothermal crystallization for all samples. The crystallization temperatures of s‐PDLA‐PLLAs shifted to higher temperatures, and the crystallization peak shapes became sharper with increasing GNS contents. The maximum crystallization temperature of the sample with 3 wt% GNS was about 128.2°C, ie, 15°C higher than pure s‐PDLA‐PLLA. At isothermal crystallization processes, the halftime of crystallization (t0.5) of the sample with 3 wt% GNS decreased to 6.4 minutes from 12.9 minutes of pure s‐PDLA‐PLLA at 160°C.The Avrami exponent n values for the nanocomposites samples were 2.6 to 3.0 indicating the crystallization mechanism with three‐dimensional heterogeneous nucleation and spherulites growth. The morphology and average diameter of spherulites of s‐PDLA‐PLLA with various GNS contents were observed in isothermal crystallization processes by polarized optical microscopy. Spherulite growth rates of samples were evaluated by using combined isothermal and nonisothermal procedures and analyzed by the secondary nucleation theory. The results evidenced that the GNS has acceleration effects on the crystallization of s‐PDLA‐PLLA with good nucleation ability in the s‐PDLA‐PLLA material.  相似文献   

11.
This article reports the synthesis and the properties of novel thermoplastic elastomers of A‐B‐A type triblock copolymer structure, where the hard segment A is poly(l ‐lactide) (PLLA) and the soft segment B is poly(ε‐caprolactone‐stat‐d ,l ‐lactide) (P(CL‐stat‐DLLA)). The P(CL‐stat‐DLLA) block with DLLA content of 30 mol % was applied because of its amorphous nature and low glass transition temperature (Tg = approximately ?40 °C). Successive polymerization of l ‐lactide afforded PLLA‐block‐P(CL‐stat‐DLLA)‐block‐PLLAs, which exhibited melting temperature (Tm = approximately 150 °C) for the crystalline PLLA segments and still low Tg (approximately ?30 °C) of the soft segments. The triblock copolymers showed very high elongation at break up to approximately 2800% and elastic properties. The corresponding d ‐triblock copolymers, PDLA‐block‐P(CL‐stat‐DLLA)‐block‐PDLAs (PDLA = poly(d ‐lactide)) were also prepared with the same procedure using d ‐lactide in place of l ‐lactide. When the PLLA‐block‐P(CL‐stat‐DLLA)‐block‐PLLA was blended with PDLA‐block‐P(CL‐stat‐DLLA)‐block‐PDLA, stereocomplex crystals were formed to enhance their Tm as well as tensile properties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 489–495  相似文献   

12.
Starburst triblock copolymers consisting of 8‐arm poly(ethylene glycol) (8‐arm PEG) and biodegradable poly(L ‐lactide) (PLLA) or its enantiomer poly(D ‐lactide) (PDLA), 8‐arm PEG‐b‐PLLA‐b‐PEG ( Stri‐L ), and 8‐arm PEG‐b‐PDLA‐b‐PEG ( Stri‐D ) were synthesized. An aqueous solution of a 1:1 mixture ( Stri‐Mix ) of Stri‐L and Stri‐D assumed a sol state at room temperature, but instantaneously formed a physically crosslinked hydrogel in response to increasing temperature. The resulting hydrogel exhibited a high‐storage modulus (9.8 kPa) at 37 °C. Interestingly, once formed at the transition temperature, the hydrogel was stable even after cooling below the transition temperature. The hydrogel formation process was irreversible because of the formation of stable stereocomplexes. In aqueous solution, gradual hydrolytic erosion was observed because of degradation of the hydrogel. The combination of rapid temperature‐triggered irreversible hydrogel formation, high‐mechanical strength, and degradation behavior render this polymer mixture system suitable for use in injectable biomedical materials, for example, as a drug delivery system for bioactive reagents or a biodegradable scaffold for tissue engineering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6317–6332, 2008  相似文献   

13.
Aliphatic polyesters and polyphosphoesters (PPEs) have received much interest in medical applications due to their favorable biocompatibility and biodegradability. In this work, novel amphiphilic triblock copolymers of PPE and poly(L ‐lactic acid) (PLLA) with various compositions were synthesized and characterized. The blocky structure was confirmed by GPC analyses. These triblock copolymers formed micelles composed of hydrophobic PLLA core and hydrophilic PPE shell in aqueous solution. Critical micellization concentrations of these triblock copolymers were related to the polymer compositions. Incubation of micelles at neutral pH followed by GPC analyses revealed that these polymer micelles were hydrolysized and resulted in decreased molecular weights and small oligomers, whereas its degradation in basic and acid mediums was accelerated. MTT assay also demonstrated the biocompatibility against HEK293 cells. These biodegradable polymers are potential as drug carriers for biomedical application. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6425–6434, 2008  相似文献   

14.
Random and block copolymerizations of L ‐ or D ‐lactide with ε‐caprolactone (CL) were performed with a novel anionic initiator, (C5Me5)2SmMe(THF), and they resulted in partial epimerization, generating D ,L ‐ or meso‐lactide polymers with enhanced biodegradability. A blend of PLLA‐r‐PCL [82/18; PLLA = poly(L ‐LA) and PCL = poly(ε‐caprolactone)] and PDLA‐r‐PCL [79/21; PDLA = poly(D ‐LA)] prepared by the solution‐casting method generated a stereocomplex, the melting temperature of which was about 40 °C higher than that of the nonblended copolymers. A blend of PLLA‐b‐PCL (85/15) and PDLA‐b‐PCL (82/18) showed a lower elongation at break and a remarkably higher tensile modulus than stereocomplexes of PLLA‐r‐PCL/PDLA‐r‐PCL and PLLA/PDLA. The biodegradability of a blend of PLLA‐r‐PCL (65/35) and PDLA‐r‐PCL (66/34) with proteinase K was higher than that of PLLA‐b‐PCL (47/53) and PDLA‐b‐PCL (45/55), the degradability of which was higher than that of a PLLA/PDLA blend. A blend film of PLLA‐r‐PDLLA (69/31)/PDLA‐r‐PDLLA (68/32) exhibited higher degradability than a film of PLLA/PDLLA [PDLLA = poly(D ,L ‐LA)]. A stereocomplex of PLLA‐r‐PCL‐r‐PDMO [80/18/2; PDMO = poly(L ‐3,D ,L ‐6‐dimethyl‐2,5‐morpholinedion)] with PDLA‐r‐PCL‐r‐PDMO (81/17/2) showed higher degradability than PLLA‐r‐PDMO (98/2)/PDLA‐r‐PDMO (98/2) and PLLA‐r‐PCL (82/18)/PDLA‐r‐PCL (79/21) blends. The tensile modulus of a blend of PLLA‐r‐PCL‐r‐PDMO and PDLA‐r‐PCL‐r‐PDMO was much higher than that of a blend of PLLA‐r‐PDMO and PDLA‐r‐PDMO. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 438–454, 2005  相似文献   

15.
The gel to sol transition of aqueous solutions of di‐ and triblock copolymers consisting of poly(ethylene oxide) and biodegradable polyesters was studied as a function of temperature. The molecular weight and the chemical composition of the biodegradable blocks, (poly(l ‐lactic acid), poly(dl ‐lactic acid), poly(dl ‐lactic acid‐co‐caprolactone), and poly(dl ‐lactic acid‐co‐glycolic acid)) were varied to investigate the effects of chain packing and relative hydrophobicity on the gel to sol transition. The block copolymers studied formed micelles at lower concentrations in water, while the concentrated solutions experienced a gel to sol transition as the temperature increased. Further increase in temperature resulted in the precipitation of polymers. With increasing molecular weight and chain packing tendency of hydrophobic biodegradable block, the gel to sol transition occurred at lower concentrations and the transition temperature ranged from 0°C to over 90°C in a relatively narrow concentration range. The results obtained in this study confirm the relationship between gelation properties and polymer structure, as well as provide more information for these polymers in drug delivery applications. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 751–760, 1999  相似文献   

16.
The thermoreversible gelation of Pluronic [poly(ethylene oxide) (PEO)–polypropylene oxide (PPO)–PEO] aqueous solutions originates from micelle formation and micelle volume changes due to PEO–water and PPO–water lower critical solution temperature behavior. The micelle volume fraction is known to dominate the sol–gel transition behavior of Pluronic aqueous solutions. Triblock copolymers of PEO and aliphatic polyesters, instead of PPO, were prepared by hexamethylene diisocyanate coupling and dicyclohexyl carbodiimide coupling. Through changes in the molecular weight and hydrophobicity of the polyester middle block, the hydrophobic–hydrophilic balance of each block was systematically controlled. The following aliphatic polyesters were used: poly(hexamethylene adipate) (PHA), poly(ethylene adipate) (PEA), and poly(ethylene succinate) (PESc). With the hydrophobicity and molecular weight of the middle block increasing, the critical micelle concentration at the same critical micelle temperature decreased, and the absolute value of the micellization free energy increased. The micelle size was rather insensitive to temperature but slightly decreased with increasing temperature. PEO–PHA–PEO and PEO–PEA–PEO triblock copolymers needed high polymer concentrations to form gels. This was ascribed to the tight aggregation of PHA and PEA chains in the micelle core due to strong hydrophobic interactions, which induced the contraction of the micelle core. However, because of the relatively hydrophilic core, a PEO–PESc–PEO aqueous solution showed gelation at a low polymer concentration. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 772–784, 2004  相似文献   

17.
Novel poly(l ‐lactide) (PLLA)/poly(d ‐lactide) (PDLA)/poly(tetrahydrofuran) (PTHF) multiblock copolymers with designed molecular structure were synthesized by a two‐stage procedure. Well‐defined PDLA‐PLLA‐PTHF‐PLLA‐PDLA pentablock copolymers were prepared by sequential ring opening polymerization of l ‐ and d ‐lactides starting from PTHF glycol, with the length of the (equimolar) PLLA and PDLA blocks being varied. Then, these dihydroxyl‐terminated pentamers were transformed into multiblock copolymers by melt chain‐extension with hexamethylene diisocyanate–being the first time that the coupling of pentablock units is reported. The successful formation of macromolecular chains with a multiblock and well‐defined architecture was demonstrated by 1H NMR spectroscopy. The thermal properties and structuring of the resulting materials were investigated by means of DSC and WAXD measurements and DMA analysis. Stereocomplexation was found to be promoted during solution and melt crystallization. This approach affords materials combining the high rigidity and strength (other than improved thermal resistance) of the hard stereocomplex crystallites with the flexibility imparted by the soft block, whereby their properties can be finely tailored through the composition of the basic pentablock units without limitations on the final molecular weight. The adopted reaction conditions make this process highly appealing in view of the possibility to perform it in extruder. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3269–3282  相似文献   

18.
In this study, several asymmetric poly(L‐lactide)/poly(D‐lactide) (PLLA/PDLA) blends were prepared by adding small amounts of PDLA with different structures into linear PLLA matrix. The effect of PDLA on rheological behavior, crystallization behavior, nucleation efficiency and spherulite growth of PLLA was investigated. Rheological results indicated that PLLA/PDLA blends showed solid‐like viscoelastic behavior at low temperature (<200°C), and the cross‐linking density of PLLA/PDLA melt at 180°C followed the order: PLLA/6PDLA > PLLA/L‐PDLA > PLLA/3PDLA > PLLA/4PDLA. No‐isotherm and isotherm crystallization results indicated that the crystallization capacity of PLLA/PDLA blends was strongly related to the PDLA structure, crystallization temperature and thermal treatment temperature. Furthermore, the dimension of crystal growth during isotherm crystallization presented the obvious dependent on the PDLA structure. The nucleation efficiency of sc‐crystallites in the blends and spherulite density during isothermal crystallization were also studied. Nucleation efficiency of sc‐crystallites in the PLLA/S‐PDLA blends showed the obvious dependent on thermal treatment temperature with respect to PLLA/L‐PDLA, and nucleation efficiency sc‐crystallites in the PLLA/S‐PDLA blends first decreased and then increased as the thermal treatment temperature increased. Spherulite density of PLLA/PDLA blends was also related to thermal treatment temperature and the PDLA structure. This study has discussed the temperature dependence of the stereocomplex networks between PLLA and PDLA with different structure, and then its consequential influence on rheology and crystallization capacity of PLLA, which would provide the theoretical direction for PLA processing. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The gelation behavior of aqueous solutions of poly(ethylene oxide-b-(DL-lactic acid-co-glycolic acid)-b-ethylene oxide) (PEO-PLGA-PEO) triblock copolymer containing short hydrophilic PEO end blocks is investigated using dynamic light scattering, rheology, small-angle neutron scattering (SANS), and differential scanning calorimetry (DSC). For polymer concentrations between 5 and 35 wt %, four distinct regions of the turbidity change depending on temperature were observed. Interestingly, in the turbid solution region, gel phase is formed for polymer concentrations above 14 wt % and an extremely slow relaxation was detected. In fact, a power law, which takes into account the dynamics of percolation clusters, dominates the correlation function. In rheological measurements, the local maximum in G' is observed at around the temperature of maximum turbidity. We further found that G" > G' and G' is highly dependent on frequency at the gel state implying viscoelastic characteristics, which is quite different from general concepts of gels, typically formed by the micellar packing. SANS profiles showing multiple peaks in the sol state rather than in the gel state as well as a DSC exotherm at the temperature of gels can also serve as the evidence of different gel states. Based upon the experimental data obtained in the present study, a new gelation mechanism induced by the macroscopic phase separation of triblock copolymers containing short hydrophilic PEO end blocks such as PEO-PLGA-PEO is proposed. The effect of the type ofhydrophobic middle blocks on the gelation is also discussed.  相似文献   

20.
Poly(l-lactide) (PLLA)/poly(d-lactide) (PDLA) blend specimens containing only stereocomplex as crystalline species, together with those of pure PLLA and PDLA specimens, were prepared by solution crystallization using acetonitrile as the solvent. Their accelerated hydrolytic degradation was carried out in phosphate-buffered solution at elevated temperatures of 70-97 °C up to the late stage. During hydrolytic degradation, the stereocomplex crystalline residues were first traced by gel permeation chromatography. Similar to the hydrolytic degradation of pure PLLA and PDLA specimens, the hydrolytic degradation of stereocomplexed PLLA/PDLA blend specimens slowed down at the late stage when most of the amorphous chains were removed and crystalline resides were formed and degraded. The estimated activation energy for hydrolytic degradation of stereocomplex crystalline residues (97.3 kJ mol−1) is significantly higher than 75.2 kJ mol−1 reported for α-form of PLLA crystalline residues. This indicates that the stereocomplex crystalline residues showed the higher hydrolysis resistance compared to that of α-form of PLLA crystalline residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号