首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ester-functionalised poly(1-vinylpyrrolidin-2-one) (PVP) oligomers obtained by radical polymerisation in methyl propionate, diethyl malonate and diethyl 2-methylmalonate were characterised by NMR spectroscopy, and MALDI-TOF mass spectrometry. The chain-transfer constants were determined as 5.54 x 10(-4), 1.22 x 10(-3) and 1.70 x 10(-2), respectively, by measuring the variation of the number-average molecular weight on conversion. These values were compared with those of methyl isobutyrate (1.65 x 10(-3)) and ethyl lactate (1.03 x 10(-2)), which had been previously determined. A clear dependence was found on the reactivity of the mobile hydrogen atoms alpha with the ester group. All of the macromolecules carried a single ester function. Therefore, the re-initiation step by the CTA-derived radicals overwhelmingly prevailed over initiation by the primary radicals.  相似文献   

2.
聚四氢呋喃三元醇的合成及表征   总被引:1,自引:0,他引:1  
合成了一种新的三元引发剂[C2H5C(CH2OCH2CH2CO+ClO4-)3],并用于制备聚四氢呋喃三元醇.用1HNMR,FTIR和GPC法对聚合物的结构进行了表征.结果表明,产物中环状齐聚物的含量极低.对聚合物水解产物的分子量及分子量分布测定结果表明,产物为预期的三元醇,聚合反应过程中链转移可以忽略,聚合物的分子量可控.  相似文献   

3.
Statistical copolymerizations of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) with 2‐vinylpyridine (2VP) with 80 to 99 mol % DMAEMA in the feed utilizing a succinimidyl ester‐terminated alkoxyamine unimolecular initiator (NHS‐BlocBuilder) at 80 °C in bulk were performed. The effectiveness of 2VP as a controlling comonomer is demonstrated by linear increases in number‐average molecular weight versus conversion, relatively low PDI (1.5–1.6 with up to 98% DMAEMA) and successful chain extensions with 2VP. Additional free nitroxide does not significantly improve control for the DMAEMA/2VP copolymerizations. The succinimidyl ester on the initiator permits coupling to amine‐terminated poly(propylene glycol) (PPG), yielding an effective macroinitiator for synthesizing a doubly thermo‐responsive block copolymer of PPG‐block‐P(DMAEMA/2VP). A detailed study of the thermo‐ and pH‐sensitivities of the statistical and block copolymers is also presented. The cloud point temperature of the statistical copolymers is fine tuned from 14 to 75 °C by varying polymer composition and pH. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012.  相似文献   

4.
α,ω‐Dihydroxy‐terminated copolymeric oligomers of a 1,3‐propylene/1,4‐cyclohexanedimethylene succinate structure were obtained by the thermal polycondensation of 1,3‐propanediol/1,4‐cyclohexanedimethanol/succinic acid mixtures. They were subsequently chain‐extended via phosgene synthesis to high molecular weight aliphatic/alicyclic copolyester‐carbonates. These new polymers, besides having a biodegradable backbone, originate from two monomers, namely, 1,3‐propanediol and succinic acid, which can be obtained by renewable sources. Therefore, they have a potential as environmentally friendly materials. All synthesized materials were characterized in reference to their molecular structure by 1H NMR and 13C NMR. Their molecular weights and molecular weight distributions were determined by size exclusion chromatography, and their main thermal properties were measured by DSC. Spectroscopic characterizations were in full agreement with the proposed structures. 1,4‐Cyclohexanedimethanol was used as a diol comonomer to improve the overall thermal properties of poly(1,3‐propylene succinate). The results of the characterization performed show that the initial expectations were only partially satisfied. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2508–2519, 2001  相似文献   

5.
In an earlier work it was shown that a random long-chain branching structure can be incorporated in polystyrene by copolymerizing styrene with a small amount of monomer that contains a chain transfer group. The use of vinylbenzylthiol as the chain transfer monomer produced a polystyrene with low number-average molecular weight and a degree of branching lower than expected. In this study polymerization kinetics were used to compute the theoretical molecular weight and degree of branching. The results show that if the chain-transfer constant of the chain transfer monomer is as high as that for vinylbenzylthiol the expected molecular weight and degree of branching will indeed be as low as those found experimentally. The theory also predicts that if the chain transfer constant is near one a highly branched bushy structure will result.  相似文献   

6.
陈涓  彭朴 《高分子学报》1999,(2):178-182
以2,4 二苯基 4 甲基 1 戊烯(αMSD)为链转移剂,采用与环境友好的本体自由基聚合法及悬浮自由基聚合法合成了重均分子量Mw=1,000~50,000,分子量分布Mw/Mn≈2的苯乙烯低聚物.随着αMSD浓度的增加分子量降低效果明显,分子量分布明显变窄.热引发本体聚合物具有单端活性双键结构.  相似文献   

7.
以传统Ziegler-Natta催化体系TiCl4/Al(#em/em#-Bu)3催化降冰片烯(NBE)和异戊二烯(IP)的共聚合, 制得可溶于常规有机溶剂的共聚物, 其数均分子量为2.0 × 104~6.5 × 104, 分子量分布指数为1.5~2.9, 降冰片烯结构摩尔含量为26%~60%. 考察了助催化剂用量、 聚合温度及2种单体投料比对共聚合的影响. 结果表明, 当降冰片烯与异戊二烯的投料摩尔比为4∶6时, 于40 ℃聚合6 h, 得到的共聚物产率为96%, 数均分子量为6.5×104, 降冰片烯结构含量45%. 用 1H NMR, 13CNMR, GPC和DSC等方法表征了共聚产物的微观结构与热性能. 13C NMR DEPT结果表明, 共聚反应中降冰片烯单体以加成方式聚合. DSC结果显示, 共聚物只有一个玻璃化转变温度(Tg=20~40 ℃). 通过Kelen-Tüdös方法得到2种单体的竞聚率分别为rNBE=0.07, rIP=0.44.  相似文献   

8.
4-(1-Adamantyl)phenol was synthesized via Friedel-Crafts reaction of 1-bromoadamantane and phenol. Substitution in the phenol para position forces polymerization to occur only in the ortho positions to give a linear polymer. Variations in formaldehyde amount, reaction time, and catalyst were evaluated. Increasing the amount of paraformaldehyde increased formation of cyclic octamer, an easily identified by-product due to its insolubility in common organic solvents. The cyclic octamer was acetylated to give a soluble model compound for comparison to acetylated polymers by IR and NMR. All of the synthetic variations employed produced low molecular weight polymers as indicated by NMR end-group analysis and SEC. The polymers showed number-average molecular weights of ca. 3000 (versus polystyrene standards by SEC), and exhibited glass transition temperatures ranging from 175–230°C, an increase of ca. 100°C over unsubstituted and para-alkyl substituted analogs. All of the samples exhibited a 10% weight loss at 400°C in nitrogen, indicating thermal stability much greater than the parent and alkyl-substituted polymers. © 1996 John Wiley & Sons, Inc.  相似文献   

9.

The phenylmethacrylamide monomer, 1‐(4‐methacrylamidophenyl)‐1‐(4‐nitrophenyl)prop‐1‐en‐3‐one (MPNP) containing a photosensitive group was synthesized by reacting 4‐nitrocinnamoylaniline with methacryloyl chloride in the presence of triethylamine at 0–5°C. The functional monomer, MPNP was polymerized in ethyl methyl ketone (EMK) under nitrogen atmosphere at 70°C using benzoyl peroxide (BPO) as the initiator. The synthesized polymer was characterized by UV, IR, 1H‐NMR and 13C‐NMR spectroscopy. The molecular weight data of the polymer as obtained from gel permeation chromatography suggests a higher tendency for chain termination by radical recombination than disproportionation. The thermal studies of the polymer were obtained from thermogravimetric analysis. The glass transition temperature of the polymer was determined by differential scanning calorimetry. The solubility of the polymer was tested in various organic solvents at room temperature. The photosensitivity of the polymer was investigated in various solvents in the presence and absence of triplet photosensitizers. The effect of the different solvents nature and concentration on the rate of photocrosslinking of the polymer were also examined for using the polymer as negative photoresist materials.  相似文献   

10.
Low molecular weight (MW) polystyrenes were synthesized by radical polymerization in the presence of catalytic chain‐transfer agents. Synthetic conditions are controlled to produce molecules containing one methyl group at one end as well as a double bond at the other end, capped with a phenyl group. Individual oligomers were separated by liquid chromatography, and the properties were analyzed using NMR, ultraviolet–visible (UV–vis) spectroscopy, and size exclusion chromatography with light scattering. The UV–vis spectra, proton NMR spectra, and differential refractive‐index increments exhibit an MW dependence of up to six–eight monomer units. The obtained dependencies can be used for precise characterization of the molecular weight distribution of polystyrene obtained by catalytic chain transfer. The double‐bonded end groups were found to be exclusively in the transconfiguration for all oligomers. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1099–1105, 2001  相似文献   

11.
Styrene oligomers with perfluoro[1-(2-fluorosulfonyl)ethoxy]ethyl end-groups have been synthesized with moderate to high yields (52-97%) via radical oligomerization by using perfluoro[2-(2-fluorosulfonyl)ethoxy]propyonyl peroxide (PPP) at various reactant ratios of styrene over PPP (80, 160, 240, 300, 360 and 420) and different temperatures (33, 37 and 42 °C), and characterized by FTIR, 1H NMR and 19F NMR. The molecular weight of the oligomers measured by gel permeation chromatography (GPC) is dependent on the reactant ratio and reaction temperature. The polydispersity of the oligomers varies from 1.99 to 3.30. The oligomer obtained at the reactant ratio of 300 has the maximum yield (97%) and much broader polydispersity (3.30). The contact angles of water, θH2O, on the oligomer films are much bigger than that of polystyrene (PS). The glass transition temperature of the oligomers, Tg, increases with the increase of molecular weight and is lower than that of the parent polymer.  相似文献   

12.
设计并合成了一种新型含甲酰基同时又含β-蒎烯单元的新单体2-β-蒎氧基-5-乙烯基苯甲醛(POVB),选择苯基双硫代乙酸1-苯基乙酯(PEPDA)为RAFT试剂、以AIBN为引发剂、在60℃下THF中实现了POVB的"活性"/可控RAFT自由基聚合.单体浓度半对数ln([M]0/[M])与聚合时间符合线性关系,聚合过程呈现一级动力学特征;聚合物分子量(Mn)随单体转化率几乎线性增加,而且整个反应过程中分子量分布(Mw/Mn1.2)保持在较窄的范围.1H-NMR的分析进一步证实了聚合物链的末端精细结构.此外,CD谱结果表明手性单元β-蒎烯基能赋予聚合物以光学活性.  相似文献   

13.
Summary: A novel functionalised poly(1‐vinylpyrrolidin‐2‐one) (PVP) derivative, carrying a pre‐determined amount of 2‐(2‐pyridinyldithio)ethylamine moieties as side substituents, P(VP‐co‐VP‐SS‐Py), has been prepared from carboxylated VP copolymers, in turn obtained by copolymerising 1‐vinylpyrrolidin‐2‐one with 3,3‐di‐(ethoxycarbonyl)‐1‐vinylpyrrolidin‐2‐one in the presence of radical initiators. Using reaction solvents acting in the mean time as chain transfer agents could control its molecular weight. P(VP‐co‐VP‐SS‐Py) proved to be extremely reactive towards exchange reactions with molecules containing mercapto functions, including bioactive peptides. The exchange derivative with reduced glutathione, chosen as a model compound, was easily prepared.

  相似文献   


14.
A method of preparation of isocyanate- or hydroxy-terminated urethane oligomers of narrow molecular weight distribution was developed and the products used for preparation of polyurethane elastomers. The method consists of the controlled step-wise reaction of 2,4- and 2,6-toluene diisocyanate (TDI) with butan-1,4-diol (BD) (in the first step) or with polyoxyethylene glycols of molecular weight varying from 200 to 1000 (following steps). All reactions were carried out in bulk. The clue was that the isocyanate- or hydroxy-terminated oligourethanes obtained in a previous step were used as the substrates in the next preparation step where they reacted with an excess of appropriate glycol or TDI, respectively. The unreacted monomer excess was removed by extraction. The products of subsequent steps characterized by spectral analysis IR and NMR and their molecular weight were determined by matrix-assisted laser desorption ionization-time of flight and electrospray ionization mass spectroscopy and gel-permeation chromatography. The oligomers were cross-linked with trifunctional low-molecular chain extenders yielding polyurethane elastomers.  相似文献   

15.
α‐Hydroxy and α,ω‐dihydroxy polymers of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) of various molecular weights were synthesized by group transfer polymerization (GTP) in tetrahydrofuran (THF), using 1‐methoxy‐1‐(trimethylsiloxy)‐2‐methyl propene (MTS) as the initiator and tetrabutylammonium bibenzoate (TBABB) as the catalyst. The hydroxyl groups were introduced by adding one 2‐(trimethylsiloxy) ethyl methacrylate (TMSEMA) unit at one or at both ends of the polymer chain. The ends were converted to 2‐hydroxyethyl methacrylate (HEMA) units after the polymerization by acid‐catalyzed hydrolysis. Gel permeation chromatography (GPC) in THF and proton nuclear magnetic resonance (1H‐NMR) spectroscopy in CDCl3 were used to determine the molecular weight and composition of the polymers. These mono‐ and difunctional methacrylate polymers can be covalently linked at the hydroxy termini to form star polymers and model networks, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1597–1607, 1999  相似文献   

16.
Controlled radical polymerizations of N‐ethylmethylacrylamide (EMA) by atom transfer radical polymerization and reversible addition‐fragmentation chain transfer processes were investigated in detail for the first time, employing complementary characterization techniques including gel permeation chromatography, 1H NMR spectroscopy, and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. In both cases, relatively good control of the polymerization of EMA was achieved, as revealed by the linear evolution of molecular weights with monomer conversions and the low polydispersity of poly(N‐ethylmethylacrylamide) (PEMA). The thermal phase transitions of well‐defined PEMA homopolymers with polydispersities less than 1.2 and degrees of polymerization up to 320 in aqueous solution were determined by temperature‐dependent turbidity measurements. The obtained cloud points (CPs) vary in the range of 58–68 °C, exhibiting inverse molecular weight and polymer concentration dependences. Moreover, the presence of a carboxyl group instead of an alkyl one at the PEMA chain end can elevate its CP by ~3–4 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 60–69, 2008  相似文献   

17.
The synthesis of branched polyethylene from single ethylene feed has been achieved by using a methylaluminoxane‐activated titanium complex bearing a tetradentate bis(phenolate) ligand with a 1,4‐dithiabutanediyl bridge 1 . This catalyst produces polyethylene with activities up to 6200 kg polymer/mol h bar. As evidenced by 13C NMR analyses, the polyethylenes contain ethyl, n‐butyl, and long‐chain (n‐hexyl or longer) branches in a range variable from 0.2 to 2.0%, depending on the experimental parameters. NMR and gas chromatography/mass spectrometry analyses suggest that such polymer microstructure arises from the in situ production of oligomers and their subsequent incorporation into the growing polyethylene chain. The broad molecular weight distribution of these polyethylenes indicates the presence of different catalytic species. The related catalyst system 2 bearing a longer 1,5‐dithiapentanediyl bridge produces linear polyethylene with moderate activity. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2815–2822, 2004  相似文献   

18.
PtBMA-b-P4VP的ATRP合成及其化学转变   总被引:1,自引:0,他引:1  
以α-氯代丙酸乙酯(ECP)为引发剂,N,N,N′,N″,N″-五甲基二亚乙基三胺(PMDE-TA)为配体,在N,N′-二甲基甲酰胺(DMF)溶液中引发甲基丙烯酸叔丁酯(tBMA)进行原子转移自由基聚合(ATRP),调节聚合反应时间得到了端基为氯原子,数均分子量为1.8×103~6.4×103的聚甲基丙烯酸叔丁酯(PtBMA-Cl)大分子引发剂。采用合成的5,5,7,12,12,14-六甲基-1,4,8,11-四氮杂环化合物(Me6[14]aneN4)为配体,使PtBMA-Cl引发4-乙烯吡啶(4VP)进行ATRP反应,得到了PtBMA-b-P4VP两嵌段共聚物,可使P4VP的收率达到60%。通过对PtBMA-b-P4VP的不同链段进行季铵化和水解反应,得到了聚甲基丙烯酸-b-季铵化聚4-乙烯吡啶(PMAA-b-QPVPB)亲水性嵌段共聚物。傅里叶变换红外光谱(FT-IR)、核磁共振(1H-NMR)和凝胶渗透色谱(GPC)分析表明:所得嵌段共聚物的结构明确,可将PtBMA与P4VP的链段长度之比调整在1∶0.5~1∶1的范围内。  相似文献   

19.
In the first paper of the series, a statistical model for star-branched polycondenzation of AB type monomers in the presence of a polyfunctional agent RAf was completely developed. The analytical expressions obtained for the number-average (D̄P̄) and weight-average (D̄P̄) degree of polymerization, and the dispersion index (D) for whole polymer species, linear and star macromolecular chains, are now derived as function of the feed and of end-group analysis. Also the important molecular parameter, mole fraction of star-branched polymer, can be evaluated. Some numerical examples are presented. It is illustrated that the molecular weight properties of the linear and star-branched polymers in the mixture of the products, very important factors for the application of this kind of polymeric materials, can be determined starting from the feed and terminal group analysis. Polymerization and oligomerization of 6-aminocaproic acid were carried out in the presence of trimesic (T3) acid and 2,2,6,6-tetra(β-carboxyethyl)cyclohexanone (T4) and EDTA as tri- and terra-functional agents. The molecular weights calculated are in good agreement with those obtained by Size Exclusion Chromatography (SEC), end group analysis and NMR spectra.  相似文献   

20.
Novel biodegradable polyester block copolymers have been synthesized by using well-defined poly(3-hydroxyoctanoate) (PHO) oligomers having a hydroxyl end group and an ester end group with M(n) values of 800, 2,500, 5,300, 8,000, or 20,000 as an elastomeric soft segment and poly(epsilon-caprolactone) as a more crystalline segment. These PHO oligomers prepared by methanolysis were subjected to block copolymerization with epsilon-caprolactone. The chemical structure of the copolymers was confirmed by (1)H NMR and (13)C NMR spectroscopy. All the copolyesters are semi-crystalline and two T(g) were observed by differential scanning calorimetry when the molecular weight of the PHO block is about 20,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号