首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
An immunoaffinity chromatography extraction capillary liquid chromatography separation has been coupled to electrospray ionization mass spectrometry for on-line characterization of drug metabolites of a therapeutic peptide in plasma. It is demonstrated that the selectivity, sensitivity and molecular weight data provided by immunoaffinity chromatography coupled to liquid chromatography/mass spectrometry provides a means of rapidly achieving qualitative determinations of small amounts of material in complicated biological matrices such as plasma. The ability to detect the peptide in rat plasma at a level of 10 ng/mL is demonstrated using this method. In addition, experiments to study the epitope of the peptide by enzymatic digestion and mass spectrometry are also discussed. The method is proposed as an alternative approach to studying the metabolism of therapeutic peptides.  相似文献   

2.
A method with parallel extraction columns and parallel analytical columns (PEC-PAC) for on-line high-flow liquid chromatography/tandem mass spectrometry (LC/MS/MS) was developed and validated for simultaneous quantification of a drug candidate and its six metabolites in dog plasma. Two on-line extraction columns were used in parallel for sample extraction and two analytical columns were used in parallel for separation and analysis. The plasma samples, after addition of an internal standard solution, were directly injected onto the PEC-PAC system for purification and analysis. This method allowed the use of one of the extraction columns for analyte purification while the other was being equilibrated. Similarly, one of the analytical columns was employed to separate the analytes while the other was undergoing equilibration. Therefore, the time needed for re-conditioning both extraction and analytical columns was not added to the total analysis time, which resulted in a shorter run time and higher throughput. Moreover, the on-line column extraction LC/MS/MS method made it possible to extract and analyze all seven analytes simultaneously with good precision and accuracy despite their chemical class diversity that included primary, secondary and tertiary amines, an alcohol, an aldehyde and a carboxylic acid. The method was validated with the standard curve ranging from 5.00 to 5000 ng/mL. The intra- and inter-day precision was no more than 8% CV and the assay accuracy was between 95 and 107%.  相似文献   

3.
A high-throughput liquid chromatography/tandem mass spectrometry (LC/MS/MS) method, which combines on-line sample extraction through turbulent flow chromatography with a monolithic column separation, has been developed for direct injection analysis of drugs and metabolites in human plasma samples. By coupling a monolithic column into the system as the analytical column, the method enables running 'dual-column' extraction and chromatography at higher flow rates, thus significantly reducing the time required for the transfer and mixing of extracted fraction onto the separation column as well as the time for gradient separation. A strategy of assessing and reducing the matrix suppression effect on the on-line extraction LC/MS/MS has also been discussed. Experiments for evaluating the resolution, peak shape, sensitivity, speed, and matrix effect were conducted with dextromethorphan and its metabolite dextrorphan as model compounds in human plasma matrix. It was demonstrated that the total run time for this assay with a baseline separation of two analytes is less than 1.5 min.  相似文献   

4.
The first synthetic tryptamines have entered the designer drug market in the late 1990s and were distributed as psychedelic recreational drugs. In the meantime, several analogs have been brought onto the market indicating a growing interest in this drug class. So far, only scarce analytical data were available on the detectability of tryptamines in human biosamples. Therefore, the aim of the presented study was the development and full validation of a method for their detection in human urine and plasma and their quantification in human plasma. The liquid chromatography-linear ion trap mass spectrometry method presented covered 37 tryptamines as well as five β-carbolines, ibogaine, and yohimbine. Compounds were analyzed after protein precipitation of urine or fast liquid–liquid extraction of plasma using an LXQ linear ion trap coupled to an Accela ultra ultra high-performance liquid chromatography system. Data mining was performed via information-dependent acquisition or targeted product ion scan mode with positive electrospray ionization. The assay was selective for all tested substances with limits of detection in urine between 10 and 100 ng/mL and in plasma between 1 and 100 ng/mL. A validated quantification in plasma according to international recommendation could be demonstrated for 33 out of 44 analytes.  相似文献   

5.
Recently, promising fasciocidal activities of artesunate and artemether were described in rats and sheep. Therefore, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to quantify artesunate, artemether and their metabolites dihydroartemisinin and dihydroartemisinin-glucuronide in sheep plasma. Protein precipitation with methanol was used for sample workup. Reversed-phase high-performance liquid chromatography (HPLC) was performed using an Atlantis C18 analytical column with a mobile phase gradient system of ammonium formate and acetonitrile. The analytes were detected by MS/MS using selected reaction monitoring (SRM) with electrospray ionisation in the positive mode (transition m/z 267.4 → 163.0). The analytical range for dihydroartemisinin, dihydroartemisinin-glucuronide and artesunate was 10-1000 ng/ml and for artemether 90-3000 ng/ml with a lower limit of quantification of 10 and 90 ng/ml, respectively. Inter- and intra-day accuracy and precision deviations were < 10%. Consistent relative recoveries (60-80%) were observed over the investigated calibration range for all analytes. All analytes were stable in the autosampler for at least 30 h (6 °C) and after three freeze and thaw cycles. The validation results demonstrated that the LC-MS/MS method is precise, accurate and selective and can be used for the determination of the artemisinins in sheep plasma. The method was applied successfully to determine the pharmacokinetic parameters of artesunate and its metabolites in plasma of intramuscularly treated sheep.  相似文献   

6.
陈静  刘召金  戴振宇  安保超  许群  张祥民 《色谱》2013,31(9):894-897
建立了一个简单、快速、有效的适用于质谱或液相色谱-质谱联用的在线固相萃取(SPE)高通量除盐方法。方法分为单柱和双柱模式,借助于包含双梯度泵(上样泵/分析泵)、自动进样器和配有十通切换阀的柱温箱的高效液相色谱系统,完成样品的自动化在线除盐。单柱模式通过上样泵实现在SPE柱上进样和除盐,被分析物则保留在SPE柱上;除盐完成后,通过阀切换利用分析泵洗脱富集在SPE柱上的被分析物。双柱模式则在单柱模式基础上增加了1根SPE柱,在色谱管理软件控制下2根SPE柱轮流工作,高效率完成样品的在线除盐。该方法在结合质谱分析蛋白质、多肽等领域具有较好的应用前景。  相似文献   

7.
Midazolam (MDZ), a short-acting benzodiazepine, is a widely accepted probe drug for CYP3A phenotyping. Published methods for its analysis have used either therapeutic doses of MDZ, or, if employing lower doses, were mostly unable to quantify the two hydroxy metabolites. In the present study, a sensitive and specific liquid chromatography/electrospray ionization tandem mass spectrometry method was developed and validated for the quantitative determination of MDZ and two of its metabolites (1'-hydroxymidazolam (1'-OHMDZ) and 4-hydroxymidazolam (4-OHMDZ)) in human plasma and oral fluid. After liquid-liquid extraction with hexane/dichloromethane (73:27, v/v), the analytes were separated on a Luna C18(2) (100 x 2.1 mm) analytical column using gradient elution. Detection was achieved using tandem mass spectrometry on an ion trap mass spectrometer. Midazolam-d6 was used as internal standard for quantification. The calibration curves were linear (R2 >0.998) between 0.05 and 20 ng/mL for MDZ and both metabolites in both matrices. Using 1 mL samples, the limit of detection was 0.025 ng/mL and the limit of quantification was 0.05 ng/mL for MDZ and the hydroxy metabolites in both matrices. Intra- and inter-day accuracies, determined at three different concentrations, were between 92.1 and 102.3% and the corresponding coefficients of variation were <7.3%. The average recoveries were 90.6%, 86.7% and 79.0% for MDZ, 1'-OHMDZ and 4-OHMDZ in plasma and 95.3%, 96.6% and 86.8% for MDZ, 1'-OHMDZ and 4-OHMDZ, respectively, in oral fluid. The method was successfully applied to a pharmacokinetic study, showing that MDZ and its hydroxy metabolites can be determined precisely in in vivo samples obtained following a single oral or intravenous dose of 2 mg MDZ. The method appears to be useful for CYP3A phenotyping in plasma using sub-therapeutic MDZ doses, but larger studies are needed to test this assumption.  相似文献   

8.
An on-line solid-phase extraction liquid chromatography/tandem mass spectrometry (SPE LC/MS/MS) assay using a newly developed SPE column and a monolithic column was developed and validated for direct analysis of plasma samples containing multiple analytes. This assay was developed in an effort to increase bioanalysis throughput and reduce the complexity of on-line SPE LC/MS/MS systems. A simple column-switching configuration that requires only one six-port valve and one HPLC pumping system was employed for on-line plasma sample preparation and subsequent gradient chromatographic separation. The resulting analytical method couples the desired sensitivity with ease of use. The method was found to perform satisfactorily for direct plasma analysis with respect to assay linearity, specificity, sensitivity, precision, accuracy, carryover, and short-term stability of an eight-analyte mixture in plasma. A gradient LC condition was applied to separate the eight analytes that cannot be distinctly differentiated by MS/MS. With a run time for every injection of 2.8 min, a minimum of 300 direct plasma injections were made on one on-line SPE column without noticeable changes in system performance. Due to the ruggedness and simplicity of this system, generic methods can be easily developed and applied to analyze a wide variety of compounds in a high-throughput manner without laborious off-line sample preparation.  相似文献   

9.
Hsieh Y  Brisson JM  Ng K  White RE  Korfmacher WA 《The Analyst》2001,126(12):2139-2143
A polymer-coated mixed-function (PCMF) column was evaluated for direct plasma injection for the simultaneous determination of a drug candidate and its hydroxyl metabolite by high-performance liquid chromatography (HPLC) with tandem mass spectrometry (MS-MS) in support of pharmacokinetic studies. Each diluted monkey plasma sample containing internal standard was directly injected on to the PCMF column for sample clean-up, enrichment and chromatographic separation. The proteins and macromolecules were first eluted from the column while the drug molecules were retained on the bonded hydrophobic phase. The analytes retained on the column were then eluted with a strong mobile phase using a gradient separation technique at a constant flow rate of 1.0 ml min(-1). When not diverted, the column effluent was connected either to the atmospheric pressure chemical ionization (APCI) source or the electrospray ionization (ESI) source as part of the mass spectrometer system used for quantification. The calibration curve was linear over the range 5-2500 ng ml(-1) for both analytes. The retention times for the analytes and the internal standard were both consistent and no column deterioration was observed for at least 500 injections. The recovery through the column and reproducibility of the dosed compound and its hydroxyl metabolite in monkey plasma samples were > 90% (RSD < 6%). The total analysis time was < 8 min per sample. The analytical results obtained by the proposed direct plasma injection method were in good agreement with those obtained by the conventional LC-MS-MS method.  相似文献   

10.
A simple, fast and sensitive liquid chromatography-mass spectrometry (LC-MS) method with automated on-line extraction using turbulent flow chromatography (TFC) for the determination of five catechins in human plasma was developed. In this method, after on-line extraction by its injection onto an extractor column at turbulent flow, five catechins were backwashed onto a reversed phase column via on-line column switching and separated chromatographically at a laminar flow of 1 ml min(-1). Using this tandem LC-LC-MS system, the extraction, the separation and the quantitation of five catechins in human plasma could be achieved with satisfactory selectivity and sensitivity. The limit of detection (S/N = 3) ranged from 0.6 to 2 ng ml(-1). The described procedure was very simple and rapid since no off-line sample preparation was required, total analysis time being 18.5 min.  相似文献   

11.
采用在线固相萃取-超高效液相色谱/串联质谱技术建立了水中啶虫脒、噻虫胺、吡虫啉、噻虫啉、噻虫嗪、呋虫胺及烯啶虫胺7种新烟碱类杀虫剂的检测方法.样品滤膜过滤后,经HLB Dierect Connect HP在线固相萃取小柱富集纯化,以ACQUITY UPLC BEH C18为分析柱串联质谱进行检测,外标法定量.在线富集水...  相似文献   

12.
The antipsychotics risperidone, aripiprazole and pipamperone are frequently prescribed for the treatment in children with autism. The aim of this study was to validate an ultra‐high performance liquid chromatography–mass spectrometry method for the quantification of these antipsychotics in plasma. An ultra‐high performance liquid chromatography–mass spectrometry assay was developed for the determination of the drugs and metabolites. Gradient elution was performed on a reversed‐phase column with a mobile phase consisting of ammonium acetate, formic acid in methanol or in Milli‐Q ultrapure water at a flow rate of 0.5 mL/min. The method was validated according to the US Food and Drug Administration guidelines. The analytes were found to be stable enough after reconstitution and injection of only 5 μL improved the accuracy and precision in combination with the internal standard. Calibration curves of all five analytes were linear. All analytes were stable for at least 72 h in the autosampler and the high quality control of 9‐OH‐risperidone was stable for 48 h. The method allows quantification of all analytes. The advantage of this method is the combination of a minimal injection volume, a short run‐time, an easy sample preparation method and the ability to quantify all analytes in one run. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The constant emergence of new psychoactive substances is a challenge to clinical and forensic toxicologists who need to constantly update analytical techniques to detect them. A large portion of these substances are synthetic cannabinoids. The aim of this study was to develop a rapid and simple method for the determination of synthetic cannabinoids and their metabolites in urine and blood using gas chromatography–mass spectrometry. The method involves an ultrasound‐assisted dispersive liquid–liquid microextraction that implies a rapid procedure, giving excellent extraction efficiencies with minimal use of toxic solvents. This is followed by silylation and analysis with gas chromatography–mass spectrometry. The chromatographic method allows for the separation and identification of 29 selected synthetic cannabinoids and some metabolites. The method was validated on urine and blood samples with the ability to detect and quantify all analytes with satisfactory limits of detection (from 1 to 5 ng/mL), limits of quantification (5 ng/mL), and selectivity and linearity (in the range of 5–200 ng/mL). The developed assay is highly applicable to laboratories with limited instrumental availability, due to the use of efficient and low‐cost sample preparation and instrumental equipment. The latter may contribute to enhance the detection of new psychoactive substances in clinical and forensic toxicology laboratories.  相似文献   

14.
Since 1999, insulin belongs to the list of prohibited substances of the International Olympic Committee and the World Anti-Doping Agency. Except for patients suffering from insulin-dependent diabetes mellitus, the administration of insulin is not allowed. Therapeutics developed to treat non-insulin-dependent diabetes mellitus act as releasing factors of endogenously produced insulin or improve its efficiency mediating the glucose uptake into insulin-dependent tissues. Hence, these compounds are also relevant for sports drug testing, and a fast, robust, and sensitive assay was developed to identify 12 oral antidiabetic agents or respective hydroxylated metabolites in human urine. Urine specimens are enzymatically hydrolyzed; target analytes are extracted by liquid-liquid extraction and identified by means of liquid chromatography interfaced to tandem mass spectrometry by electrospray ionization. Detection limits of respective drugs ranged between 10 and 30 ng/mL, metabolites of therapeutics were characterized by diagnostic fragmentation pathways upon collisionally activated dissociation of protonated molecules, and general fragmentation routes were proposed.  相似文献   

15.
Monitoring steroid use requires an understanding of the metabolism in the species in question and development of sensitive methods for screening of the steroid or its metabolites in urine. Qualitative information for confirmation of methandrostenolone and identification of its metabolites was primarily obtained by coupled-column high-performance liquid chromatography-tandem mass spectrometry. The steroids and a sulphuric acid conjugate were isolated and identified by their daughter ion mass spectra in the urine of both man and the horse following administration of methandrostenolone. Spontaneous hydrolysis of methandrostenolone sulphate gave 17-epimethandrostenolone and several dehydration products. This reaction had a half-life of 16 min in equine urine at 27 degrees C. Mono- and dihydroxylated metabolites were also identified. Several screening methods were evaluated for detection and confirmation of methandrostenolone use including thin-layer chromatography and high-performance liquid chromatography. Coupled-column liquid chromatography was used for automated clean-up of analytes difficult to isolate by manual methods. The recovery of methandrostenolone was 101 +/- 3.3% (mean +/- S.D.) at 6.5 ng/ml and both methandrostenolone and 17-epimethandrostenolone were quantified in urine by ultraviolet detection up to six days after a 250-mg intramuscular dose to a horse. The utility of on-line tandem mass spectrometry for confirmation of suspected metabolites is also shown.  相似文献   

16.
A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using a high-resolution octadecyl silica column compatible with aqueous compounds was developed for the simultaneous determination of benzodiazepines and their metabolites in human serum. This method enabled us to determine multiple benzodiazepines, including flurazepam, bromazepam, chlordiazepoxide, nitrazepam, clonazepam, flunitrazepam, estazolam, clobazam, lorazepam, alprazolam, triazolam, brotizolam, fludiazepam, diazepam, quazepam, prazepam and their metabolites such as 7-aminonitrazepam, 7-aminoclonazepam, 7-acetamidonitrazepam, N-desmethylclobazam and N-desmethyldiazepam. The analytes spiked into human serum were subjected to solid-phase extraction followed by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. The running time was within 25 min for the measurement of 22 benzodiazepines and their metabolites. The recovery rates exceeded 58.1% for those compounds except for quazepam, which showed a recovery of 45.8%. The limit of detection ranged from 0.3 to 11.4 ng/mL. Linearity was satisfactory for all compounds. These data suggest that the present method can be applicable to routine assay for benzodiazepines in the clinical setting.  相似文献   

17.
A novel and simple online solid‐phase extraction liquid chromatography‐tandem mass spectrometry method was developed and validated for the simultaneous determination of diazepam and its five metabolites including nordazepam, oxazepam, temazepam, oxazepam glucuronide, and temazepam glucuronide in human oral fluid. Human oral fluid was obtained using the Salivette® collection device, and 100 μL of oral fluid samples were loaded onto HySphere Resin GP cartridge for extraction. Analytes were separated on a Waters Xterra C18 column and quantified by liquid chromatography with tandem mass spectrometry using the multiple reaction monitoring mode. The whole procedure was automatic, and the total run time was 21 min. The limit of detection was in the range of 0.05–0.1 ng/mL for all analytes. The linearity ranged from 0.25 to 250 ng/mL for oxazepam, and 0.1 to 100 ng/mL for the other five analytes. Intraday and interday precision for all analytes was 0.6–12.8 and 1.0–9.2%, respectively. Accuracy ranged from 95.6 to 114.7%. Method recoveries were in the range of 65.1–80.8%. This method was fully automated, simple, and sensitive. Authentic oral fluid samples collected from two volunteers after consuming a single oral dose of 10 mg diazepam were analyzed to demonstrate the applicability of this method.  相似文献   

18.
In this study, a liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated to simultaneously determine the anticancer drugs etoposide and paclitaxel in mouse plasma and tissues including liver, kidney, lung, heart, spleen and brain. The analytes were extracted from the matrices of interest by liquid–liquid extraction using methyl tert‐butyl ether–dichloromethane (1:1, v/v). Chromatographic separation was achieved on an Ultimate XB‐C18 column (100 × 2.1 mm, 3 μm) at 40°C and the total run time was 4 min under a gradient elution. Ionization was conducted using electrospray ionization in the positive mode. Stable isotope etoposide‐d3 and docetaxel were used as the internal standards. The lower limit of quantitation (LLOQ) of etoposide was 1 ng/g tissue for all tissues and 0.5 ng/mL for plasma. The LLOQ of paclitaxel was 0.4 ng/g tissue and 0.2 ng/mL for all tissues and plasma, respectively. The coefficients of correlation for all of the analytes in the tissues and plasma were >0.99. Both intra‐ and inter‐day accuracy and precision were satisfactory. This method was successfully applied to measure plasma and tissue drug concentrations in mice treated with etoposide and paclitaxel‐loaded self‐microemulsifying drug‐delivery systems.  相似文献   

19.
A high-throughput bioanalytical method for simultaneous quantitation of pravastatin and its metabolite (M1) in human serum was developed and validated using on-line extraction following liquid chromatography tandem mass spectrometry (LC-MS/MS). The on-line extraction was accomplished by the direct injection of a 50 microL serum sample, mixed 4:1 with an aqueous internal standard solution, into one of the extraction columns with aqueous 1 mm formic acid at flow rate of 3 mL/min. The separation and analysis were achieved by back-eluting the analytes from the extraction column and the analytical column to the mass spectrometer with an isocratic mobile phase consisting of 62% aqueous 1 mm formic acid and 38% acetonitrile at a flow rate of 0.8 mL/min. The second extraction column was being equilibrated while the first column was being used for analysis, and vice versa. The standard curve range was 0.500-100 ng/mL for pravastatin and M1. The lower limit of quantitation, 0.500 ng/mL for all the analytes, was achieved when 50 microL of human serum was used. The intra- and inter-day precisions were within 7.4%, and the accuracy was between 95 and 103%. The on-line extraction was finished in 0.5 min and total analysis time was 2.5 min per sample.  相似文献   

20.
In this study, an automated on-line solid-phase extraction coupled to fast liquid chromatography–tandem mass spectrometry (on-line SPE fast LC–MS/MS) method was developed for the simultaneous analysis of bisphenol A (BPA), bisphenol F (BPF), bisphenol E (BPE), bisphenol B (BPB) and bisphenol S (BPS) in canned soft drinks without any previous sample treatment. A C18 (12 μm particle size) loading column was used for the SPE on-line preconcentration before the liquid chromatography baseline separation of bisphenol compounds using a C18 Fused-Core™ (50 mm × 2.1 mm i.d.) column, which took less than 3 min. Gradient elution and heated electrospray were used to reduce matrix effect and improve ionization efficiency. To select the most intense and selective transitions, fragmentation studies were performed by multiple-stage mass spectrometry in an ion trap mass analyzer and tandem mass spectrometry in a triple quadrupole instrument, this latter instrument being used for quantitation in SRM mode. Quality parameters of the method were established and we obtained a simple, fast, reproducible (RSD values lower than 10%) and accurate (precision higher than 93%) method for the analysis of bisphenols in canned soft drinks at the ng L−1 level using matrix-matched calibration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号