首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
选用甲苯作为目标污染物,采用微量注射泵作为污染物发生装置来对室内空气中污染物的释放过程进行模拟,并测试TVOC清除剂对甲苯的净化效率,构建了空气净化产品的评价模型。3次重复测试TVOC清除剂对甲苯的净化效率均值为21.7%,该污染物发生装置所发生的污染物浓度具有良好的稳定性和重复性。  相似文献   

2.
日本庆应大学和神奈川技术学院最近开发出一种新试剂,这种试剂可容易地检测出室内空气中甲苯和二甲苯的浓度。 专家称,这将有助于人们及时了解室内空气污染情况,  相似文献   

3.
建立了同时测定鱼、虾生物体中甲苯咪唑及代谢物-氨基甲苯咪唑和羟基甲苯咪唑残留的分析方法。样品以水和乙酸乙酯提取,正己烷去脂、MCX固相萃取柱净化,高效液相色谱-紫外检测器测定。重点研究了样品前处理方法,并对各种不同的固相萃取柱的净化效果和准确度进行了研究。甲苯咪唑及代谢物在5~200μg/kg的添加水平下回收率为81.4%~95.3%,相对标准偏差为1.9%~8.6%,方法线性范围为10~2000ng/mL。方法检测限为甲苯咪唑:5μg/kg,羟基甲苯咪唑:5μg/kg,氨基甲苯咪唑:10μg/kg。  相似文献   

4.
据中新网报道,在中国高新技术产业开发区协会、科技部火炬高技术产业开发中心等举办的“中央空调室内空气净化解决方案”新闻发布会上,专家介绍,室内空气中存在多种有害物质,污染程度要高出室外5~10倍。一直关注室内空气净化问题的某公司负责人称,研究表明室内空气污染主  相似文献   

5.
室内装饰装修材料的发展带来更多的室内空气污染,严重危害人体健康,因而治理室内空气污染受到广泛关注,其中光催化技术具有环保、高效、低成本等特点成为室内空气净化的主要发展方向。本文总结了光催化反应机理、光催化材料类型、合成方法、开发策略及其研究进展,分析了提高光催化材料效率的关键所在及存在的问题,并提出了研究展望。  相似文献   

6.
基于自主研制的真空紫外单光子电离飞行时间质谱仪和在线高精度甲醛分析仪,研制了一套新型乘用车室内空气痕量组分的快速检测系统。通过净化空气对乘用车室内空气进行置换,置换完成后,分别利用在线挥发性有机物质谱仪和在线高精度甲醛分析仪对乘用车室内空气中痕量组分和甲醛进行连续检测。结果表明,苯、甲苯、二甲苯/乙苯、苯乙烯和甲醛在对应浓度范围内具有良好的线性,相关系数(r2)均大于0.99,相对标准偏差均小于5%,检出限分别为1.3×10-9、0.1×10-9、0.2×10-9、0.8×10-9、0.1×10-9 mol/mol。采用该方法测定车内空气,结果显示,在短时间内,车内VOCs可快速释放达到释放亚平衡状态,并可得到亚平衡状态下的VOCs浓度及释放速率结果。测试车辆车内空气中待测物质苯、甲苯、二甲苯/乙苯、苯乙烯和甲醛的浓度分别为0.30、8.90、25.10、21.90、15.05μg/m3。该方法无复杂耗时的采样过程,操作简便,能够满足...  相似文献   

7.
采用自行研制的高时间分辨便携式飞行时间质谱(Portable time-of-flight mass spectrometry,P-TOFMS),基于网格布点检测法,在污染和通风自净后的条件下,以高暴露风险的甲苯、二甲苯作为VOCs代表物质,实时、在线监测1394 m2室内空气中的甲苯、二甲苯的浓度分布,并根据高时间分辨数据对污染源进行快速解析.结果表明,1.5h内即可完成室内40个采样点的全部分析工作;污染条件下室内甲苯和二甲苯的最高浓度为2633和223 μg/m3;自然通风24h后,浓度分别降低至113和173 μg/m3;2个模拟污染源及1个背景污染源均被准确识别.P-TOF-MS技术在家居、车间等室内空气VOCs污染源快速识别方面具有广阔的应用前景.  相似文献   

8.
甲苯是一种典型的挥发性有机污染物.近年来,催化氧化法是一种广泛使用并具有开发潜力的有效去除挥发性有机污染物的方法,而贵金属催化剂一直是首选.介孔二氧化硅材料SBA-15具有规则孔道和较高的比表面积因而在催化领域中具有较大的应用潜力.本课题组已对一系列的SBA-15负载的纳米银催化剂的制备和低温催化氧化性能进行了研究,本文则通过研究不同预处理处理气氛对Ag/SBA-15催化剂结构以及甲苯催化氧化性能的系统研究,获得纳米银催化剂结构与甲苯催化氧化性能间的构效关系,对新催化剂的结构优化以及甲苯催化净化的低温催化剂开发具有重要的科学意义.研究表明,处理气氛明显影响了银物种和氧物种的状态,进而影响了催化剂的催化活性,先氧气(500℃)后氢气(300℃)处理的O500-H300催化剂对甲苯的反应活性明显优于在500℃氧气处理样品O500及氢气处理样品H500.由X-射线衍射和O2-程序升温脱附(TPD)可知,氧气500 oC处理使催化剂上形成大颗粒银粒子和氧化银粒子,以及大量次表层氧物种.氢气处理使催化剂形成较大的银粒子,由于未经过氧气处理,该催化剂上并没有次表层氧的生成.先氧气处理再氢气处理后催化剂上形成高分散的小粒径银粒子以及次表层氧物种,这表明低温氢气处理可以降低银粒子的尺寸并使催化剂上的银粒子得到再分散,同时不会影响次表层氧物种的形成.从催化剂的甲苯吸附和TPD实验中看出,大尺寸银粒子对甲苯具有较强的吸附性能,从而有利于甲苯在低温的催化氧化,但是在高温反应中没有优势;小尺寸银粒子虽然对甲苯的吸附能力不强,但是对分子氧有较好的吸附作用,进而增强自身与甲苯的相互作用,而且也促进了分子氧的活化,预处理中形成的次表层氧有效增强了甲苯和银粒子的相互作用,因此,先氧气后氢气处理的O500-H300样品在反应中显示出最好的甲苯催化活性.  相似文献   

9.
掺铈纳米TiO2薄膜制备及光催化降解甲醛甲苯   总被引:11,自引:0,他引:11  
通过Sol-Gel工艺在玻璃表面及多孔陶瓷表面制得了均匀透明的掺铈纳米TiO2薄膜.通过SEM、XRD及UV-Vis等手段对玻璃表面掺铈纳米TiO2薄膜进行了表征.结果表明,薄膜表面无开裂现象、膜内部比表面积大、TiO2分布均匀.薄膜中出现的锐钛矿相在(101)面有一定的择优取向,且UV-Vis研究表明,掺铈纳米TiO2薄膜在近紫外的吸光度有明显提高.利用自行设计的反应器,以多孔陶瓷为介质,对甲醛、甲苯等有机物进行了光催化降解研究.结果表明,掺铈纳米TiO2薄膜对甲醛甲苯有极高的光催化降解效率,由于薄膜成本低廉,易于工业化,为净化室内空气开辟了新的途径.  相似文献   

10.
随着人们健康意识的不断提升,室内空气中甲醛气体的净化引起了研究者广泛的关注.本文简要介绍了甲醛的危害以及来源;综述了国内室内建材、空气净化器研究中与二氧化钛光催化技术降解甲醛相关的专利,最后对本研究领域存在的问题以及未来的研究方向进行了总结和展望.  相似文献   

11.
An analytical method was established for the simultaneous determination of 39 polycyclic aromatic hydrocarbons (PAHs) in air. The method was applied to a survey of gaseous and particulate PAHs in household indoor air. The survey was performed in 21 houses in the summer of 1999 and in 20 houses in the winter of 1999-2000 in Fuji, Japan. Thirty-eight PAHs were determined in indoor and outdoor air in the summer, and 39 PAHs were determined in indoor and outdoor air in the winter. The concentrations of gaseous PAHs in indoor air tended to be higher than those in outdoor air in the summer and winter. The concentrations of particulate PAHs in indoor air were the same as or lower than those in outdoor air in the summer and winter. PAH profiles, correlations between PAH concentrations, and multiple regression analysis were used to determine the factors affecting the indoor PAH concentrations. These results showed that gaseous PAHs in indoor air were primarily from indoor emission sources, especially during the summer, and that indoor particulate PAH concentrations were significantly influenced by outdoor air pollution.  相似文献   

12.
This paper reviews the practical applications of solid-phase microextraction (SPME) in the analysis of organic vapours which are pollutants of atmospheric air, indoor air and workplace air. Applications to headspace of solids and liquids such as different waters, soils, food, etc., are also included. Problems related to calibration in SPME analysis of gaseous matrices are also dealt with. Calibration procedures and apparatus for generation of standard gaseous mixtures are described. Advantages and limitations of SPME based gas chromatographic methods of air organic pollutants are discussed.  相似文献   

13.
This article presents the results of an exploratory application of the Solid Phase MicroExtraction (SPME) technique to the analysis of BTEX (benzene, toluene, ethylbenzene and xylenes) at the microg/m3 level in outdoor and indoor air. The salient features of the method validation are reported. As shown by the various examples of field sampling described, SPME technique appears as a method of choice for fast qualitative analysis and quantitative determination of Volatile Organic Compounds (VOC). The small dimensions of the SPME sampling system and the short sampling time let envisage its utilisation for the rapid diagnostic of outdoor and indoor air quality.  相似文献   

14.
The aim of the study was to analyse BTEX compounds (benzene, toluene, ethylbenzene, xylenes) in air by solid phase micro-extraction/gas chromatography/mass spectrometry (SPME/GC/MS), and this article presents the features of the calibration method proposed. Examples of real-world air analysis are given. Standard gaseous mixtures of BTEX in air were generated by dynamic dilution. SPME sampling was carried out under non-equilibrium conditions using a Carboxen/PDMS fibre exposed for 30 min to standard gas mixtures or to ambient air. The behaviour of the analytical response was studied from 0 to 65 g/m3 by adding increasing amounts of BTEX to the air matrix. Detection limits range from 0.05 to 0.1 g/m3 for benzene, depending on the fibre. Inter-fibre relative standard deviations (reproducibility) are larger than 18%, although the repeatability for an individual fibre is better than 10%. Therefore, each fibre should be considered to be a particular sampling device, and characterised individually depending on the required accuracy. Sampling indoor and outdoor air by SPME appears to be a suitable short-delay diagnostic method for volatile organic compounds, taking advantage of short sampling time and simplicity.  相似文献   

15.
A method was developed for the determination of mercury in air, using preconcentration by amalgamation on gold absorbers followed by measurement by atomic fluorescence spectrometry (AFS). The system has a detection limit of ca. 2.0 pg and the precision is in the range 5–10% (relative standard deviation). The accuracy was confirmed by comparison with cold vapour atomic absorption spectrometry. The method was applied to the determination of gaseous mercury in both indoor and outdoor air. As a result of the sensitivity small sample volumes can be analysed and only short sampling times are required. The method is thus suitable for continuous monitoring of mercury and for the fast and reliable determination of gaseous mercury in the atmosphere, even at background levels.  相似文献   

16.
The composition of products formed from photooxidation of the aromatic hydrocarbon toluene was investigated. The OH-initiated photooxidation experiments were conducted by irradiating toluene/CH3ONO/NO/air mixtures in a smog chamber, the gaseous products were detected under the supersonic beam conditions by utilizing vacuum ultraviolet pho-toionization mass spectrometer using synchrotron radiation in real-time. And an aerosol time-of-flight mass spectrometer was used to provide on-line measurements of the individ-ual secondary organic aerosol particle resulting from irradiating toluene. The experimen-tal results demonstrated that there were some differences between the gaseous products and that of particle-phase, the products of glyoxal, 2-hydroxyl-3-oxo-butanal, nitrotoluene, and methyl-nitrophenol only existed in the particle-phase. However, furane, methylglyoxal, 2-methylfurane, benzaldehyde, cresol, and benzoic acid were the predominant photooxidation products in both the gas phase and particle phase.  相似文献   

17.
The possibility of using a piece of gas chromatographic capillary column as a tubular denuder for isolation and enrichment of organic pollutants present in air was studied. The partition coefficients (Kfs) of typical organic pollutants (benzene, chlorobenzene, toluene) between the gaseous phase and the denuder sorption layer were determined and effects of analyte concentration in the gaseous phase and gas flow rate on partitioning were studied. The partition coefficients were found to be constant in the studied range of concentration and gaseous mixture flow rate. A piece of a capillary column coated with polydimethylosiloxane can be used as a tubular denuder.  相似文献   

18.
We report a unique gaseous formaldehyde sensing chip based on a combination between patterned single-walled carbon nanotube field effect transistors and a precisely controlled aqueous layer with photopolymerized polyelectrolytic gels. The proposed system reliably detects 0.1 ppb level formaldehyde gas, suggesting a new type of indoor air quality monitoring device.  相似文献   

19.
In this review, we focus on the status of the monitoring of polycyclic aromatic hydrocarbons (PAHs) in ambient air as well as in living (indoor) and working environments in Africa from 2000 to 2018. This is important as PAHs are ubiquitous in the environment and are known to be potentially carcinogenic. Aspects of sampling such as collection media for particle bound and gaseous PAHs are discussed. The efficiency and basic quality assurance data of commonly employed extraction techniques for separating target PAHs from sampling media using conventional solvent-based and emerging solvent-free approaches were also evaluated. Polyurethane foam and quartz fiber filters are generally the most commonly used collection media for gaseous and particle bound PAHs, respectively. A wide range of total PAH concentrations in ambient air has been reported across the continent of Africa, with the highest levels found at sampling sites close to high density traffic and industrial areas. A rapidly increasing population, commercial and industrial development, poor urban transportation infrastructure and the use of low quality oil products were the main causes of high total gas and particulate PAH concentrations (1.6–103 μg/m3) in West African port cities such as Cotonou, Benin. With regards to indoor environments, gas phase PAHs were detected at the highest total concentrations in rural areas ranging from 1 to 43 μg/m3 in Burundi with naphthalene being the most prevalent. Firewood burning was the major emission source in most developing countries and resulted in benzo[a]pyrene concentrations above the European permissible risk level of 1 ng/m3.  相似文献   

20.
Levels of urban gaseous and particulate pollutants were investigated in the Cathedral of Cologne, Germany in the framework of the EU-project “VIDRIO”. The purpose of this study was to evaluate the influence of a protective double glazing system on the preservation of ancient stained glass windows by sampling at protected and unprotected windows (indoors, in the interspace and outdoor of the Cathedral). The interspace between the ancient stained glass window and the protective glazing is flushed in the Cathedral by indoor air, hence isolating the historic glass from the outdoor air and exposing it to indoor air on both sides of the glass panels. Concentrations of aggressive gaseous pollutants such as NO2, SO2, O3 and CO2 as well as elemental concentrations of bulk particles and relative abundances of single particles were surveyed at all sampling locations. Elemental concentrations in bulk particulate matter were found to be significantly lower inside the Cathedral in comparison to the outdoor air. This result is advantageous for the stained glass windows. Single particle analysis of the samples from Cologne showed also soil dust and organic particles as well as sulphates and nitrates, from which the latter two compounds are dangerous for the stained glass windows. On the base of the obtained results, it can be concluded that the protective glazing system in the Cathedral of Cologne can be considered as predominantly advantageous from both the gases' point of view (except for NO2-candles burning) and from the particles' point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号