首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
It has been well established that large‐scale structures, usually called coherent structures, exist in many transitional and turbulent flows. The topology and range of scales of those large‐scale structures vary from flow to flow such as counter‐rotating vortices in wake flows, streaks and hairpin vortices in turbulent boundary layer. There has been relatively little study of large‐scale structures in separated and reattached transitional flows. Large‐eddy simulation (LES) is employed in the current study to investigate a separated boundary layer transition under 2% free‐stream turbulence on a flat plate with a blunt leading edge. The Reynolds number based on the inlet free stream velocity and the plate thickness is 6500. A dynamic subgrid‐scale model is employed to compute the subgrid‐scale stresses more accurately in the current transitional flow case. Flow visualization has shown that the Kelvin–Helmholtz rolls, which have been so clearly visible under no free‐stream turbulence (NFST) are not as apparent in the present study. The Lambda‐shaped vortical structures which can be clearly seen in the NFST case can hardly be identified in the free‐stream turbulence (FST) case. Generally speaking, the effects of free‐stream turbulence have led to an early breakdown of the boundary layer, and hence increased the randomization in the vortical structures, degraded the spanwise coherence of those large‐scale structures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The dynamic and thermal characteristics of steady near-wall boundary layers in flow deceleration regions are studied on the basis of differential turbulencemodels. The method of transferring the boundary conditions from the wall into the flow is tested for flows with variable longitudinal pressure gradients. Using differential turbulence models in the transition and low-Reynolds-number regions near surfaces the effect of the parameters of highly turbulent free stream on the development of dynamic processes in the developed turbulent boundary layer in the flow deceleration region is studied. The calculated profiles of the velocity, the kinetic energy of turbulence, the friction and thermal conductivity coefficients, and the temperature factor are compared with the experimental data in the cases in which the boundary conditions are preassigned both on the wall and in the flow. The effect of an intermediate boundary condition on the results of the calculations is analyzed.  相似文献   

3.
Boundary layer transition over an isolated surface roughness element is investigated by means of numerical simulation. Large Eddy Simulation (LES) flow-modeling approach is employed to study flow characteristics and transition phenomenon past a roughness element immersed within an incoming developing boundary layer, at a height-based Reynolds number of 1170. LES numerical results are compared to experimental data from literature showing the time-averaged velocity distribution, the velocity fluctuation statistics and the instantaneous flow topology.Despite slight difference in the intensity of streamwise velocity fluctuations, the present LES results and experimental data show very good agreement. The mean flow visualization shows streamwise counter-rotating vortices pairs formation downstream of the obstacle. The primary pair induces an upwash motion and a momentum deficit that creates a Kelvin-Helmholtz type flow instability. The instantaneous flow topology reveals the formation of coherent K-H vortices downstream that produce turbulent fluctuations in the wake of the roughness element. These vortices are streched and lifted up when moving downstream. The velocity fluctuations results show that the onset of the turbulence is dominated by the energy transfer of large-scale vortices.  相似文献   

4.
A high Reynolds number flat plate turbulent boundary layer is investigated in a wind-tunnel experiment. The flow is subjected to an adverse pressure gradient which is strong enough to generate a weak separation bubble. This experimental study attempts to shed some new light on separation control by means of streamwise vortices with emphasize on the change in the boundary layer turbulence structure. In the present case, counter-rotating and initially non-equidistant streamwise vortices become and remain equidistant and confined within the boundary layer, contradictory to the prediction by inviscid theory. The viscous diffusion cause the vortices to grow, the swirling velocity component to decrease and the boundary layer to develop towards a two-dimensional state. At the position of the eliminated separation bubble the following changes in the turbulence structure were observed. The anisotropy state in the near-wall region is unchanged, which indicates that it is determined by the presence of the wall rather than the large scale vortices. However, the turbulence in the outer part of the boundary layer becomes overall more isotropic due to an increased wall-normal mixing and a significantly decreased production of streamwise fluctuations. The turbulent kinetic energy is decreased as a consequence of the latter. Despite the complete change in mean flow, the spatial turbulence structure and the anisotropy state, the process of transfer of turbulent kinetic energy to the spanwise fluctuating component seems to be unchanged. Local regions of anisotropy are strongly connected to maxima in the turbulent production. For example, at spanwise positions in between those of symmetry, the spanwise gradient of the streamwise velocity cause significant production of turbulent fluctuations. Transport of turbulence in the spanwise direction occurs in the same direction as the rotation of the vortices.  相似文献   

5.
Fluctuating pressures are a critical consideration in the life-prediction of thin-gauge hot-structures operating in high-speed flow. Sources include both boundary layer turbulence and self-induced components, where the latter arises from panel vibrations. While a considerable body of research is available for the structural response of thin-gauge panels to self-induced pressure fluctuations, the response to boundary layer turbulence is not well-understood due to the complexity in modeling the loads. Important open issues are the degree of coupling between the boundary layer induced fluctuating loads and the thermo-structural response, and also the potential for interactions between a turbulent boundary layer and structural response to result in structural instabilities. This study seeks to address these issues by incorporating a phenomenological model for turbulent boundary layer loads into an aerothermoelastic framework. The enhanced aerothermoelastic model is then used to study the combined effect of self- and boundary layer-induced fluctuating pressures on responses of simple panels, and to characterize features in the turbulent boundary layer loads that can lead to large amplitude structural vibrations. The developed phenomenological model predicts that the magnitude of the boundary layer induced fluctuating pressure increases with increasing panel inclination, and decreases with increasing temperature. Furthermore, it is found that both RMS magnitude and phase angle of the boundary layer induced pressure loads play key roles in panel response. Certain combinations of these features, coupled with the self-induced pressure fluctuations, are found to cause onset of fluid–structural instabilities earlier than observed when pressure fluctuations from the turbulent boundary layer are either neglected or decoupled from the panel response.  相似文献   

6.
减阻工况下壁面周期扰动对湍流边界层多尺度的影响   总被引:1,自引:0,他引:1  
通过在平板壁面施加不同频率振幅的压电陶瓷振子周期性扰动,进行了湍流边界层主动控制减阻的实验研究.在压电陶瓷振子最大减阻工况下(80 V和160Hz),使用单丝边界层探针对压电振子自由端下游2mm处进行测量,得到不同法向位置流向速度信号的时间序列.通过对比施加控制前后的多尺度分析,发现压电振子产生的扰动只对近壁区产生影响,使得近壁区大尺度脉动降低,小尺度脉动强度增大,而对边界层的外区则基本没有影响.进一步对大尺度和小尺度的脉动信号进行条件平均,发现压电振子产生的扰动对小尺度脉动的影响在时间相位上并不均匀,小尺度脉动强度在大尺度脉动为正时比在大尺度脉动为负时具有更明显的增加.这表明壁面周期扰动主要通过使大尺度高速扫掠流体破碎为小尺度结构,来影响相应的高壁面摩擦事件,从而达到减阻效果.   相似文献   

7.
The boundary layer which represents the narrow zone between a solid body and the free stream can have a laminar or a turbulent state. This state influences on the one hand the properties of the near-wall flow like skin friction or heat transfer and on the other hand also the free-stream flow itself, e.g. the downstream flow angle of a turbomachinery blade. Thus it is important for designers of fluid machinery to understand and predict the state of the boundary layer as well as the transition processes between the two states.In this work the so-called relaminarization is investigated which represents a reverse transition from a turbulent to a laminar boundary layer. At the Institute for Thermal Turbomachinery and Machine Dynamics at Graz University of Technology a test bench has been designed in order to produce a highly accelerated flow, thus triggering relaminarization. In the present work, the flow in this test bench is numerically investigated with Reynolds-averaged Navier-Stokes (RANS) flow simulation as well as with a large eddy simulation (LES).An outcome of this paper is, that the LES shows a very good agreement to the measurement results and is capable of predicting relaminarization.  相似文献   

8.
The process of laminar to turbulent transition induced by a von Karman vortex street wake, was studied for the case of a flat plate boundary layer. The boundary layer developed under zero pressure gradient conditions. The vortex street was generated by a cylinder positioned in the free stream. An X-type hot-wire probe located in the boundary layer, measured the streamwise and normal to the wall velocity components. The measurements covered two areas; the region of transition onset and development and the region where the wake and the boundary layer merged producing a turbulent flow. The evolution of Reynolds stresses and rms-values of velocity fluctuations along the transition region are presented and discussed. From the profiles of the Reynolds stress and the mean velocity profile, a ‘negative' energy production region along the transition region, was identified. A quadrant splitting analysis was applied to the instantaneous Reynolds stress signals. The contributions of the elementary coherent structures to the total Reynolds stress were evaluated, for several x-positions of the near wall region. Distinct regions in the streamwise and normal to the wall directions were identified during the transition.  相似文献   

9.
The receptivity of a laminar boundary layer to free stream disturbances has been experimentally investigated through the introduction of deterministic localized disturbances upstream of a flat plate mounted in a wind tunnel. Hot-wire measurements indicate that the spanwise gradient of the normal velocity component (and hence the streamwise vorticity) plays an essential role in the transfer of disturbance energy into the boundary layer. Inside the laminar boundary layer the disturbances were found to give rise to the formation of longitudinal structures of alternating high and low streamwise velocity. Similar streaky structures exist in laminar boundary layers exposed to free stream turbulence, in which the disturbance amplitude increases in linear proportion to the displacement thickness. In the present study the perturbation amplitude of the streaks was always decaying for the initial amplitudes used, in contrast to the growing fluctuations that are observed in the presence of free stream turbulence. This points out the importance of the continuous influence from the free stream turbulence along the boundary layer edge.  相似文献   

10.
Modified variants of differential turbulence models which make it possible continuously to calculate both the entire flow region with laminar, transition and turbulent regimes and local low Reynolds number zones are proposed for investigating the flow and heat transfer in the boundary layers developing in compressible gas flow past curvilinear airfoils. The effect of the intensity and scale of free-stream turbulence and their variability along the outer boundary layer edge, as well as the combined action of the turbulence intensity and the streamwise pressure gradient in flow past blade profiles, on the heat transfer and near-wall turbulence characteristics is analyzed. The numerical results are compared with experimental and theoretical data.  相似文献   

11.
The effect of physical variability and uncertainty in model correlations on laminar-turbulent transition in transonic flows is computed using two different Stochastic Collocation methods. Physical variability in the boundary conditions is first investigated for a flow over a flat plate with and without pressure gradient to quantify the uncertainties on the skin friction distribution along the plate surface. Since the laboratory conditions for the flat plate test cases are well defined and the applied transition model has been tuned for these cases, good agreement with experiments is achieved and the variability in the output is low. The second investigated cases exhibit boundary layer transition on the surface of a highly loaded turbine guide vane under transonic flow conditions. Comparisons between the predicted and measured wall heat transfer are used to quantify uncertainties in the free stream turbulence and the model correlations that accounts for compressibility effects on the onset and extension of the bypass transition. The computational results show that the uncertainties have a significant impact on the transition location for the turbine guide vane simulations and, consequently, on the reliability of the predictions for compressible flows. The output uncertainty accounts to a large extent for the difference between the deterministic simulation and the experiments. The results from the Simplex Stochastic Collocation method are computationally more efficient than those of the Stochastic Collocation based on Clenshaw–Curtis quadrature.  相似文献   

12.
R. Scharf 《Rheologica Acta》1985,24(3):272-295
The plane mixing layer formed between two parallel streams moving with different velocities is one of the simplest types of free turbulent boundary layers and has frequently been studied for Newtonian fluids. As a result of this and because of its good experimental accessibility this type of flow provides a good opportunity for obtaining information about the influence of drag reducing additives on the structure of free turbulence. This is all the more so because of the presence of a characteristic vortex structure which can be clearly distinguished from the overlying statistical fine turbulence. The turbulence field was investigated using an existent laser Doppler anemometer system that had been designed for space-time correlation measurements. This enabled measurements to be made of the mainstream velocity as well as of the longitudinal and transversal turbulent fluctuations and, after a simple modification, also of the Reynolds shear stresses and the cross correlation coefficients. The main result of the addition of 50 ppm of the polymer used (Separan AP30) was found to be an intensification of the Reynolds shear stresses. The resulting substantially more rapid increase (than in water) in the thickness of the shear layer can be explained theoretically; such behaviour has also been observed in free jets. On the other hand, the reduced thickness of the mixing layer in the initial region and the associated enhancement of the longitudinal fluctuations and damping of the transversal fluctuations indicate that the main shear flow induces a flow anisotropy by uncoiling and aligning the polymer molecules. The increase in the spreading angle suggests that the entrainment process at the edges of the mixing layer is intensified. This can be explained by the enhancement of the large energy carrying vortices in the turbulence spectrum. This is probably also the reason for the general increase in the correlation coefficients observed at all positions along the centreline of the flow field. However, a complete discussion of the energy transfer mechanism present here, in particular with inclusion of the fine turbulence responsible for dissipation, is only possible with the help of a detailed analysis of the vortex structure in the mixing layer. This is presented in a following paper. The relation between the degree of drag reduction and the intensity of the Reynolds shear stresses enables the direct influence of the rheological properties of the fluid on the turbulent momentum transfer to be clearly recognized.  相似文献   

13.
Measurements using stereo particle image velocimetry are presented for a developing turbulent boundary layer in a wind tunnel with a Mach 2.75 free stream. As the boundary layer exits from the tunnel nozzle and moves through the wave-free test section, small initial departures from equilibrium turbulence relax, and the boundary layer develops toward the equilibrium zero-pressure-gradient form. This relaxation process is quantified by comparison of first and second order mean, fluctuation, and gradient statistics to classical inner and outer layer scalings. Simultaneous measurement of all three instantaneous velocity components enables direct assessment of the complete turbulence anisotropy tensor. Profiles of the turbulence Mach number show that, despite the M = 2.75 free stream, the incompressibility relation among spatial gradients in the velocity fluctuations applies. This result is used in constructing various estimates of the measured-dissipation rate, comparisons among which show only remarkably small differences over most of the boundary layer. The resulting measured-dissipation profiles, together with measured profiles of the turbulence kinetic energy and mean-flow gradients, enable an assessment of how the turbulence anisotropy relaxes toward its equilibrium zero-pressure-gradient state. The results suggest that the relaxation of the initially disturbed turbulence anisotropy profile toward its equilibrium zero-pressure-gradient form begins near the upper edge of the boundary layer and propagates downward through the defect layer.  相似文献   

14.
Effect of the backward-facing step heights on turbulent mixed convection flow along a vertical flat plate is examined experimentally. The step geometry consists of an adiabatic backward-facing step, an upstream wall and a downstream wall. Both the upstream and downstream walls are heated to a uniform and constant temperature. Laser–Doppler velocimeter and cold wire anemometer were used, respectively, to measure simultaneously the time-mean velocity and temperature distributions and their turbulent fluctuations. The experiment was carried out for step heights of 0, 11, and 22 mm, at a free stream air velocity, u, of 0.41 m/s, and a temperature difference, ΔT, of 30 °C between the heated walls and the free stream air. The present results reveal that the turbulence intensity of the streamwise and transverse velocity fluctuations and the intensity of temperature fluctuations downstream of the step increase as the step height increases. Also, it was found that both the reattachment length and the heat transfer rate from the downstream heated wall increase with increasing step height.  相似文献   

15.
 combined laser-doppler and cold wire anemometry technique for determining turbulent heat flux is described. The system can be used in flows of arbitrarily high turbulent intensity and large temperature variations. Its potential is demonstrated via measurements in a simulated stable atmospheric boundary layer, for which the Monin-Obukhov length scale was about 70% of the boundary layer depth. Mean and turbulence properties were obtained throughout the boundary layer and the results are shown to be both internally consistent and similar to corresponding field data. Measurements in the highly turbulent, separated flow behind a bluff body mounted in the stable boundary layer are also presented. Received: 9 May 1997 / Accepted: 2 September 1997  相似文献   

16.
In high flow velocity areas like those suitable for marine energy application, bathymetry variations create strong velocity fluctuations in the water column. It is therefore essential to characterize the turbulence evolution in the wake of seabed elements which may impact the loads on tidal turbines. For that purpose, experiments are carried out in a flume tank with Re as high as achievable in Froude similitude, with bathymetry variations experimentally represented with various wall-mounted square elements of height H: a cylinder or a cube as unitary obstacles and combinations of these elements followed by an inclined floor to resemble smooth bathymetry changes. The onset flow is a simple boundary layer profile with height 1.3 H and a low turbulence intensity. PIV and LDV measurements are used to investigate the wake past all test cases in order to distinguish high floor elevation cases (unitary obstacles) from mean roughness effect (obstacle combinations). Results show that the obstacle combinations produce a wake less extended than for a single wide cylinder that produces an extended wake and very energetic turbulent events. With a single cube, no downstream development of large turbulent events exist and the wake reduces by a factor of 3 compared to the wake cylinder case. An inclined floor downstream of a single wall-mounted obstacle reduces its wake length but does not alter the turbulent structures shed. Turbulent velocity profiles extracted from every wake topology investigated are also compared. The general conclusion is that: for small aspect ratio cases, the obstacle will not affect the water column. On the contrary, strong energetic turbulent events are emitted from large aspect ratio obstacles. Combinations cases stand in-between.  相似文献   

17.
A variant of the two-parameter turbulence model which makes it possible continuously to calculate a flow region with laminar, transition and turbulent regimes is proposed for investigating the flow under conditions of high freestream turbulence intensity. It is shown that the properties of the thermal transition can be theoretically described using the quasi-steady turbulence model in the case of periodic freestream velocity distribution. The numerical results are compared with theoretical and experimental data. The approach proposed is developed for determining the combined effect of the parameters of harmonic fluctuations of the external velocity and freestream turbulence on the heat transfer characteristics on a flat plate with different boundary conditions for the enthalpy.  相似文献   

18.
Three-dimensional spatial direct numerical simulation is used to investigate the evolution of reactive plumes established on non-circular sources. Simulations are performed for three cases: a rectangular plume with an aspect ratio of 2:1, a square plume, and the square plume in a corner configuration. Buoyancy-induced large scale vortical structures evolve spatially in the flow field. A stronger tendency of transition to turbulence is observed for the free rectangular plume than the free square case due to the aspect ratio effect. Dynamics of the corner square plume differs significantly from the corresponding free case due to the enhanced mixing by the side-wall effects. A turbulent inertial subrange has been observed for the free rectangular and corner square plumes. Mean flow properties are also calculated. The study shows significant effects of source geometry and side-wall boundary on the flow transition and entrainment of reactive plumes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
A hydraulic jump is characterized by a highly turbulent flow with macro-scale vortices, some kinetic energy dissipation and a bubbly two-phase flow structure. New air–water flow measurements were performed in a large-size facility using two types of phase-detection intrusive probes: i.e. single-tip and double-tip conductivity probes. These were complemented by some measurements of free-surface fluctuations using ultrasonic displacement meters. The void fraction measurements showed the presence of an advective diffusion shear layer in which the void fractions profiles matched closely an analytical solution of the advective diffusion equation for air bubbles. The free-surface fluctuations measurements showed large turbulent fluctuations that reflected the dynamic, unsteady structure of the hydraulic jumps. The measurements of interfacial velocity and turbulence level distributions provided new information on the turbulent velocity field in the highly-aerated shear region. The velocity profiles tended to follow a wall jet flow pattern. The air–water turbulent integral time and length scales were deduced from some auto- and cross-correlation analyses based upon the method of Chanson [H. Chanson, Bubbly flow structure in hydraulic jump, Eur. J. Mech. B/Fluids 26 (3) (2007) 367–384], providing the turbulent scales of the eddy structures advecting the air bubbles in the developing shear layer. The length scale Lxz is an integral air–water turbulence length scale which characterized the transverse size of the large vortical structures advecting the air bubbles. The experimental data showed that the dimensionless integral turbulent length scale Lxz/d1 was closely related to the inflow depth: i.e. Lxz/d1 = 0.2–0.8, with Lxz increasing towards the free-surface.  相似文献   

20.
Owing to the high beam power densities envisaged in advanced nuclear targets, liquid metal-operated free surface targets are conceived as one feasible option. There, the free surface is formed by an adequately shaped upstream located nozzle. Target boundary conditions necessitate a detailed knowledge on the turbulent flow in contraction nozzles in order to identify turbulence models accurately predicting experimental findings within the velocity range of interest for nuclear target and hence can then act as design optimisation tools. In this context, a combined experimental and numerical study is conducted on the basis of the turbulent flow in the contraction nozzle of the Super-FRS target. Two aspects determining the turbulent flow in the nozzle have been investigated. The first is a potential relaminarisation of the boundary layer caused by the acceleration within the contraction and the second is a development of the secondary flows due to the pressure gradient in the rectangular shaped ducts cross-section. Regarding the three different turbulence models investigated here only the V2F model exhibited the capability to predict the relaminarisation of the turbulent boundary layer both qualitatively and quantitatively. All turbulence models are able to predict the development of secondary flows induced by pressure gradients in transverse direction with an acceptable accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号