首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uniform capsule‐like α‐Fe2O3 particles were synthesized via a simple hydrothermal method, employing FeCl3 and CH3COONa as the precursors and sodium dodecyl sulfate (SDS) as soft template. X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), and high‐resolution transmission electron microscopy were used to characterize the structure of synthesized products. Some factors influencing the formation of capsule‐like α‐Fe2O3 particles were systematically investigated, including different kinds of surfactants, the concentration of SDS, and reaction times. The investigation on the evolution formation reveals that SDS was critical to control the morphology of final products, and a possible five‐step growth mechanism was presented by tracking the structures of the products at different reaction stages.  相似文献   

2.
We report synthesis of α‐Fe2O3 (hematite) nanorods by reverse micelles method using cetyltrimethyl ammonium bromide (CTAB) as surfactant and calcined at 300 °C. The calcined α‐Fe2O3 nanorods were characterized by X‐ray diffraction (XRD), high‐resolution scanning electron microscopy (HRSEM), transmission electron microscopy (TEM), energy dispersive spectrometer (EDS), fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). The result showed that the α‐Fe2O3 nanorods were hexagonal structure. The nanorods have diameter of 30‐50 nm and length of 120‐150 nm. The weak ferromagnetic behavior was observed with saturation magnetization = 0.6 emu/g, coercive force = 25 Oe and remanant magnetization = 0.03 emu/g. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Dendrite and platelet‐like α‐Fe2O3 microcrystals were synthesized by the oxidation reaction of K4Fe(CN)6and NaClO3 through a simple hydrothermal method. The structures and morphologies of the as‐prepared samples were characterized in detail by X‐ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The experiment results show that NaOH played an important role in controlling the morphology of the final products. The possible mechanism was discussed to elucidate the formation of different morphologies of the α‐Fe2O3 microstructures. Besides, the magnetic property of the dendrite α‐Fe2O3 microstructure was characterized by a vibrating sample magnetometer (VSM). (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Spindle‐shaped α‐FeOOH nanocrystals were facilely synthesized using a poly (vinyl pyrrolidone) (PVP)‐assisted route under hydrothermal conditions. The chemical compositions and morphol‐ogies of the as‐prepared samples were characterized in detail by X‐ray power diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). The experimental results reveal that these spindle‐shaped α‐FeOOH nanocrystals have self‐organized into assemblies with hierarchical nanostructures. The crucial roles of PVP in the hydrothermal synthesis of hierarchical α‐FeOOH nanostructures were discussed. The possible formation mechanism was also suggested. Moreover, the spindle‐shaped α‐Fe2O3 nanocrystals could be easily obtained after calcining the α‐FeOOH prepared by the PVP‐assisted hydrothermal process. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
We synthesized In2O3/ZnO/Al‐doped ZnO (AZO) core‐double shell nanowires, in which the inner shell (ZnO) and the outer shell (AZO) have been subsequently deposited on the core In2O3 nanowires. With their one‐dimensional morphology being preserved, the X‐ray diffraction (XRD), lattice‐resolved transmission electron microscopy (TEM) image, selected area electron diffraction, and Raman spectrum coincidentally revealed that the shell was comprised of hexagonal ZnO phase. In addition, TEM‐EDX investigation revealed the presence of Al elements in the shell region. The thermal annealing at 700 °C did not significantly change the nanowire morphology, however, the XRD spectrum indicated that the ZnO phase was crystallized by the annealing. PL spectrum of the 700 °C‐annealed In2O3/ZnO/AZO core‐double shell nanowires was comprised of three Gaussian bands at approximately 2.1 eV, 2.4 eV, and 3.0 eV, respectively. The integrated intensities of 2.1 eV‐, 2.4 eV‐, and 3.0 eV‐bands were decreased by the thermal annealing. This study will pave the road to the preparation and applicaition of double‐shelled nanowires. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
With a facile solvothermal method, Ag@Fe3O4 nanowire was successfully prepared and characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The obtained Ag@Fe3O4 nanowire posses enhanced peroxidase‐like activity with good stability and high absorbance. The optimization of pH, H2O2 concentration and loading capacity were carried out. The result of kinetic analysis indicates that the catalyzed reaction followed a Michaelis‐Menten behavior. The good peroxidase‐like activity makes Ag@Fe3O4 nanowire be promising for real application in biomedicine.  相似文献   

7.
Flower‐like self‐organized crystalline ZnO architectures were obtained through a facile and controlled hydrothermal process. As‐synthesized products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), electron diffraction and UV‐Vis spectroscopy. XRD and electron diffraction results confirmed the obtained materials are pure wurtzite ZnO. The effects of different ratios of starting materials and solvent on the morphologies of ZnO hydrothermal products were also evaluated by SEM observations. It is suggested that the use of water, rather than ethanol as the solvent, as well as employing a precursor of Zn(Ac)2 and 2NaOH (v/v) in hydrothermal reactions are responsible for the generation of specific flower‐like self‐assembled ZnO structures. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Large crystals of La0.63Pb0.37Mn O3+δ with small La(Pb)‐ deficiency of about 0.005‐0.01 at.% were grown by high temperature solution growth method. The structure of the grown crystals was determined as rhombohedral with R‐3 space group by single‐crystal X‐ray diffractometry. The surface morphology of the crystals and the exact chemical composition was examined by scanning electron microscopy and energy dispersive X‐ray analysis methods, respectively. The IR‐transmission spectrum reveals the presence of Mn3+O6‐ and Mn4+O6‐ octahedra in the lattice of La0.63Pb0.37Mn O3+δ crystals. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
A novel high‐efficiency photoelectrode (Fe2O3/reduced graphene oxide/CdS) built from heterostructure and conductive scaffold has been successfully designed and synthesized. Reduced graphene oxide works as a “bridge” which benefits for electron and hole transport. The obtained heterostructure photoelectrodes were systematically characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Raman spectroscopy, and X‐ray photoelectron spectroscopy (XPS). The photoconversion efficiency (η) and photocurrent densities vs. time (I‐t) curves responding to monochromatic lights have been further investigated in‐depth, which reveals that introduction of CdS and reduced graphene oxide played an important role in the enhancement of photoelectrochemical performance.  相似文献   

10.
ZnO/SrTiO3 core/shell nanorod arrays were fabricated by a facile two‐step method. ZnO nanorod arrays were first hydrothermally grown on Si substrate. Then, using liquid phase deposition method, SrTiO3 were deposited onto the ZnO nanorods to form core/shell nanorod structures. The morphologies and structures of the products were characterized by scanning electron microscopy, transmission electron microscopy, and X‐ray diffraction. The photocatalytic behavior of the nanorod arrays was also examined through the photodegradation of methylene blue solution under UV irradiation. It was found that the core/shell nanorod arrays with deposition time of 10 min showed higher photocatalytic activity than bare ZnO nanorod arrays. This enhancement was attributed to the efficient charge separation at the ZnO/SrTiO3 interface.  相似文献   

11.
In this research we report synthesis of the heterostructure Mg‐Al‐Zn mixed metal oxide (ZnO/MMO) nanocomposite photocatalysts derived from Zn(OH)2/Mg‐Al‐layered double hydroxides (ZLDHs) precursors. The obtained samples were characterized by the X‐ray diffraction (XRD), FT‐IR, BET surface area, ICP and TG/DTG methods. The chemical compositions and morphology of the synthesized materials were investigated by the energy dispersive X‐ray analysis (EDX) and the transmission electron microscopy (TEM). The results reveal that at the reaction time 96 h, ZLDH has the highest crystalinity which was confirmed by the X‐ray diffraction spectra. The calcined samples at 500, 600 and 700 °C for 4 h show that the crystallinity of the nanocomposite improves with the increase of calcination temperature. The photocatalytic activities of synthesized nanocomposites were compared for the degradation of C. I. Basic Blue 3 (BB3) dye under UV illumination in aqueous solution. Among the synthesized nanocomposites, ZnO/MMO calcined at 700 °C shows the highest efficiency towards the removal of dye. The effect of UV illumination on the stability of ZnO in ZnO/MMO nanocomposite and pure ZnO was also investigated. The results showed that the photostability of ZnO in ZnO/MMO nanocomposite is increased compared to the pure ZnO.  相似文献   

12.
A simple and general microwave route is developed to synthesize nanostructured ZnO using Zn(acac)2·H2O (acac = acetylacetonate) as a single source precursor. The reaction time has a great influence on the morphology of the ZnO nanostructures and an interesting spindle‐like nanostructure is obtained. The microstructure and morphology of the synthesized materials are investigated by X‐ray diffraction (XRD), scanning electron microscopy (SEM), field‐emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED). It is found that all of them with hexagonal wurtzite phase are of single crystalline structure in nature. Ultraviolet–visible (UV‐vis) absorption spectra of these ZnO nanostructures are investigated and a possible formation mechanism for the spindle‐like ZnO nanostructures is also proposed.  相似文献   

13.
Octahedral Fe3O4microcrystals were synthesized using a triethanolamine‐assisted route under hydrothermal conditions. The chemical compositions and morphologies of the as‐prepared samples were characterized in detail by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). During the hydrothermal process for the preparation of Fe3O4 octahedra, the possible mechanism was discussed to elucidate the formation of the octahedral Fe3O4microcrystals. Triethanolamine and hydrazine hydrate play important roles in the formation of the final products. The magnetic property of sample was evaluated on a vibrating sample magnetometer (VSM) at room temperature. The values of saturation magnetization and coercivity of octahedral Fe3O4are about 103 emu/g and 157 Oe, respectively. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Mesoporous Al2O3 were positively synthesized via treatment of the freshly precipitated amorphous alumina gel using aluminium sulphate as aluminium source, and sodium dodecyl sulphate (SDS) as structure‐directing agent (SDAs). The microstructures, morphologies and textural properties of the as‐prepared materials were characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM) and thermo gravimetric analysis (TG‐DTA). The calcined product at 600 °C was highly porous in nature having a BET surface area of 42 m2/g. These porous Al2O3 exhibits excellent adsorption performance for Congo red and the corresponding decolourisation efficiencies reached 99% in just 15 min at 27 °C. The subsequent calcined product at 1200 °C is the alpha alumina single crystal hexagonal platelets with rhombohedral crystallization.  相似文献   

15.
Uniform shuttle‐like Sb2S3 nanorod‐bundles were synthesized via a polyvinylpyrrolidone (PVP) assisted solvothermal approach under alkaline condition, using antimony chloride (SbCl3) and thiourea (CH4N2S, Tu) as the starting materials in ethanol. The phase structure, composition and morphology of the product were characterized by means of X‐ray diffraction (XRD), energy dispersive X‐ray spectrometry (EDS), transmission electron microscopy (TEM), and high‐resolution transmission electron microscopy (HRTEM). XRD and EDS results confirm that the synthesized Sb2S3 nanorod‐bundles have an orthorhombic structure and an atomic ratio of 3:2 for S:Sb. TEM and HRTEM results show that the shuttle‐like Sb2S3 bundles are composed of nanorods with a size distribution of 20‐40 nm and growing along c‐axis. Furthermore, experiments under different reaction conditions were carried out and the mechanism for the growth of nanorod‐bundles was discussed (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Flowerlike structured In2O3 were successfully synthesized via a hydrothermal process and the subsequent calcinations. The obtained sample consists of microrods with an average diameter of 0.5‐1 μm and a length of 1‐3 μm. Structure and property of the sample were characterized by X‐ray powder diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The sensing properties towards trimethylamine (TMA) were examined at 200‐400 °C, which showed high sensitivity, better selectivity, and prompt response/recovery merits. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Crystallization of calcium carbonate (CaCO3) crystals by a gas‐liquid diffusion method has been carried out in aqueous solution using a double‐hydrophilic block copolymer (DHBC) poly(maleic anhydride)‐b‐poly(acrylic acid) (PMA‐b‐PAA). The as‐prepared products were characterized with X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), selected area electron diffraction (SAED), high‐resolution transmission electron microscopy (HRTEM) and infrared spectroscopic analysis (FT‐IR). Uniform one‐dimensional calcite micro/nanostructures with different morphologies are fabricated through an assembled process. The influence of PMA‐b‐PAA copolymer concentration on the morphology of calcite nano/microwires is investigated, which plays an important role in the morphological control of building blocks composed of one‐dimensional calcite crystals. The possible formation mechanism of one‐dimensional CaCO3 crystals was discussed. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
1, 3 and 5 mol% ZnO doped LiNbO3 film and 2 mol% MgO doped LiNbO3 multilayer films were grown on the LiNbO3 (001) substrate by liquid phase epitaxy (LPE) method with a Li2O‐V2O5 system. We examined the optical transmission spectra of the Zn:LiNbO3 by Fourier Transform‐Infrared Spectrophotometer (FT‐IR). The crystallinity and the lattice mismatch between the Zn:LiNbO3 film and Mg:LiNbO3 film was confirmed by x‐ray rocking curve (XRC) and observed the ZnO and MgO distribution in the cross‐section of the multilayer thin films by electron probe micro analyzer (EPMA). Furthermore, the surface morphology of the films was observed using atomic force microscopy (AFM). (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The title compound, C10H8N6O3, was synthesized by the reaction of 3‐(1H)‐1,2,4‐triazole hydrazine with 3‐nitrobenzaldehyde in ethanol. The single crystal structure has been determined by X‐ray analysis. The crystal belongs to monoclinic system, space group p21/c with cell constant, a = 8.0214(17) Å, b = 17.334(4) Å, c = 8.9070(18) Å, V= 1179.4(4) Å3. An intramolecular N—H...O and N—H…N hydrogen bond are observed between the ‐NH group with O atom of the carbonyl group and the ‐NH group with N atom. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The current work reports the fabrication of crystalline Bi2O3 nanorods on Pt‐coated Si substrates using trimethylbismuth and O2 as the bismuth and the oxygen sources, respectively, in the metalorganic chemical vapor deposition process. Their microstructures were characterized by scanning electron microscopy, X‐ray diffraction, and transmission electron microscopy. The obtained nanorods were crystalline, with their diameters in the range of 20–200 nm. The absence of tip‐nanoparticle and the presence of predeposited Bi2O3 layer indicated that the growth was dominated by a vapor‐solid process. The photoluminescence measurements of the Bi2O3 nanorods at room temperature exhibited an emission band peaked at around 422 nm. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号