首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Subnanosecond pulses have been produced by optical free induction decay in KCI:KReO4. Here the ν3 vibrational mode of the perrhenate ion (ReO-4) acts as a resonant absorber for the 10.6μm, P(26) CO2 laser line. As the phase relaxation time T2 of the substitutional molecule ion is very small, efficient picosecond pulses can be produced by this medium if faster shuttering can be devised.  相似文献   

2.
A novel selective synthesis of the unsymmetrically substituted tetrathiafulvalene dimethyltrimethylene‐tetrathiafulvalene (DMtTTF) is described together with its electrocrystallization to the known conducting mixed‐valence ClO4 and ReO4 salts. Infrared (IR) and Raman spectra of the two isostructural quasi‐one‐dimensional cation radical salts (DMtTTF)2X (X = ReO4, ClO4) are investigated as a function of temperature (T = 5–300 K). At ambient temperature, these salts show metallic‐like properties and below Tρ = 100–150 K, they undergo a smeared transition to semiconducting state. To study this charge localization, we measured temperature dependence of polarized IR reflectance spectra (700–16 000 cm–1) and Raman spectra (150–3500 cm–1, excitation λ = 632.8 nm) of single crystals. For both compounds, the Raman data and especially the bands related to the C=C stretching vibration of the DMtTTF molecule show that the charge distribution on molecules is uniform down to the lowest temperatures. Similarly, IR data confirm that down to the lowest temperatures, there is neither charge ordering nor important modification of the electronic structure. However, the temperature dependence of Raman spectra of both salts reveals a regime change at about 150 K. Additionally, using Density Functional Theory (DFT) methods, the normal vibrational modes of the neutral DMtTTF0 and cationic DMtTTF+ species and also their theoretical IR and Raman spectra were calculated. The theoretical data were compared with the experimental IR and Raman spectra of neutral DMtTTF0 molecule. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Raman spectroscopy, complemented by infrared spectroscopy, has been used to characterise the ferroaxinite minerals of the theoretical formula Ca2Fe2+Al2BSi4O15(OH), a ferrous aluminium borosilicate. The Raman spectra are complex but are subdivided into sections on the basis of the vibrating units. The Raman spectra are interpreted in terms of the addition of borate and silicate spectra. Three characteristic bands of ferroaxinite are observed at 1082, 1056 and 1025 cm−1 and are attributed to BO4 stretching vibrations. Bands at 1003, 991, 980 and 963 cm−1 are assigned to SiO4 stretching vibrations. Bands are found in these positions for each of the ferroaxinites studied. No Raman bands were found above 1100 cm−1 showing that ferroaxinites contain only tetrahedral boron. The hydroxyl stretching region of ferroaxinites is characterised by a single Raman band between 3368 and 3376 cm−1, the position of which is sample‐dependent. Bands for ferroaxinite at 678, 643, 618, 609, 588, 572, 546 cm−1 may be attributed to the ν4 bending modes and the three bands at 484, 444 and 428 cm−1 may be attributed to the ν2 bending modes of the (SiO4)2−. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
By using quantum chemical calculations, the most probable structures of the anionic complex species dodecabenzylbambus[6]uril–ClO4?, dodecabenzylbambus[6]uril–MnO4?, dodecabenzylbambus[6]uril–TcO4? and dodecabenzylbambus[6]uril–ReO4? were derived. In these four complexes, each of the considered anions, included in the macrocyclic cavity, is bound by 12 weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the respective anion. Further, the corresponding interaction energies of the investigated four anionic complexes were calculated; the absolute values of these calculated energies increase in the series of ReO4? < TcO4? < MnO4? < ClO4?.  相似文献   

5.
This article examines the influence of the composition on the Raman spectra of lead silicate glass. Modern and historic lead alkali glasses and high‐lead glazed ceramics were analysed complementarily by Raman spectrometry and elemental techniques, either electron microprobe, proton induced X‐ray emission (PIXE) or scanning electron microscope with energy dispersive spectrometry (SEM‐EDS). The results showed that lead alkali silicate and high‐lead silicate glasses can be easily distinguished from their Raman spectra profile. In lead alkali silicate glasses, continuous variations were observed in the spectra with the compositional change. In particular, the position of the intense peak around 1070 cm−1 was linearly correlated to the lead content in the glass. A unique decomposition model was developed for the spectra of lead alkali silicate glasses. From the combination of the Raman and elemental analyses, correlations were established between the spectral components and the composition. These correlations permitted to interpret the spectra and access additional compositional information, such as the lead content from area ratio A990/A900–1150, the total alkali + alkaline‐earth content from the area ratio A1100/A900–1150 or the silica content from the area ratio A1150/A900–1150. In lead silicate glass containing over 25 mol% PbO, the compositional variation induced no variation in the SiO4 network region of the Raman spectra [150–1350 cm−1], therefore no correlations and compositional information could be gained from the glass spectra in this range of composition. This new development of Raman spectroscopy for the analyses of glass will be very valuable for museums to not only access compositional information non‐destructively but also to understand the structural changes involved with their alteration. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
To understand the behaviour of nuclear waste glass in groundwater, borosilicate glasses were placed in simulated groundwater for more than 200 days. The composition of the simulated groundwater was similar to that of the groundwater in Beishan (a potential nuclear waste site). The pH value of groundwater was adjusted to 7.5, and the ratio of the surface area of glass to the volume of the solution (SA/V) was set to 10?m?1. Solutions and bulk glasses were characterised to obtain the elemental behaviour and surface morphology of the glass/solution interface, which was named the alteration layer. The mean thicknesses of the alteration layer were 5.16?±?0.11?µm and 11.67?±?0.28?µm at 70°C and 90°C, respectively. A thicker alteration layer was attributed to the lower surface activation energy of the glass and a high ion exchange between K+ and Na+ in the interface between the glass surface and the solution. For the elemental behaviour, mobile species B and Na were depleted, while K and Ca from the solution were enriched in the alteration layer due to ion exchange. Network species Si decreased in the layer, leading to the corrosion of the backbone of the glass; however, species Al increased, which implied that some [SiO4] units were partially replaced by [AlO4] units. In this work, glass in groundwater suffered much more intense corrosion than that in de-ionised water.  相似文献   

7.
New 99Tc and Re-complexes in colloidal state were prepared by the direct reduction of TcO4- and ReO4- with NaBH4 in presence of a new synthezied ligand: 2,2‘(ethan diylidene dinitrilo) diphenol. The two complexes were precipitated in colloidal forms and characterized by spectroscopy and HPL chromatography. The complexes are H2O soluble.  相似文献   

8.
By means of different concentrations the signal-to-noise ratios of Tc-99-NMR spectra were determined applying well measurable Tc-samples [tetrabutylammoniwn pertechnetate, TBA (TcO4)J and a 250 MHz-spectrometer. The signal-to-noise ratios of the spectra were determined by using the integrated routines of the firm's software and accumulating different number of scans. By fittings of data of the signal-to-noise ratio dependence and by extrapolation the minimum Tc-concentralion could be empirically found out. Applying a duration of measurements of 12 hours about 10?7 molar concentrations can be determined.  相似文献   

9.
We report on the experimental and theoretical studies of the flexible organometallic complex Cp2Mo(dmit) which often exhibits a folding in the solid state. Raman spectra of charge‐transfer salts formed by Cp2Mo(dmit) with various anions (Br, BF4, PF6, SbF6, ReO(dmit)2, TCNQF4) were measured at room temperature using red (632.8 nm) and near‐infrared (780 nm) excitations. The influence of the folding of the MoS2C2 metallacycle in [Cp2Mo(dmit)]+• cation on the Raman spectra was investigated. Due to folding of [Cp2Mo(dmit)]+•, the bands related to the CC and some C S stretching vibrations shift toward lower wavenumbers by about 0.5–0.6 cm−1deg−1. The bond lengths, charge distribution on atoms, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energies, and dipole moments for neutral and ionized complex with various folding angles were calculated by density functional theory (DFT) methods. Additionally, the normal vibrational modes and theoretical Raman spectra were calculated and compared with experimental data. Our results indicate that vibrational spectroscopy can be applied for investigation of complex deformations in the solid state. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Raman and infrared spectra of furan 2,3-dicarboxylic acid and of its potassium salts in aqueous solution have been investigated in the range 100–4000 cm−1. An assignment of the bands is given on the basis of Cs symmetry. The polarization of the Raman lines shows that the furan ring is planar. The carboxylate groups of the neutral ion are orthogonal. The intramolecular hydrogen bond existing in the crystalline acid and potasium hydrogen salt is sufficiently strong to be maintained in aqueous solution and the resulting chelate rings are in the furan plane.  相似文献   

11.
A series of silicate glasses formed in the binary system (1-X)CaO-XSiO2with silica mole fractions X ranging from 0.61to 0.38have been prepared using container-less aerodynamic levitation techniques and CO2-laser heating. Glasses with X<0.45were prepared for the first time but, no glass formation was possible at compositions X<0.38. Ambient temperature polarized and depolarized Raman spectra were measured for all these glasses. Qi-speciation analysis of the isotropic Raman spectra shows that near X∼0.38the predominant structures present are the SiO44− tetrahedra and the single bridged Q1species. Oxygen bridging was present at all compositions studied while at X<0.45 small amounts of free oxygen anions was present. The data are compared with the resent NMR measurements obtained with the same glass samples used in the present study. Stokes and anti-Stokes Raman spectra were measured in low frequencies revealing the Boson peak (BP) at ∼50 and ∼70 cm−1 for the corresponding polarized and depolarized configurations. On the Stokes side the BP frequencies exhibit a fictional shift due to contributions from the low frequency vibrational modes of the glass.  相似文献   

12.
Na self-diffusion, Li self-diffusion, Na+–Li+ ion exchange, electrical conductivity, and mechanical relaxation have been studied below Tg on glasses of the system ZrF4–BaF2–LaF3–AF (A=Na, Li), with A=10, 20, 30 mol%. Compared to the transport mechanism in alkali-containing silicate glasses, the mechanisms in these non-oxide glasses are anomalous. Thus the self-diffusion coefficient of Na decreases with increasing NaF content, whereas that of Li increases with increasing LiF content. Both the electrical conductivity and the Na+–Li+ ion exchange reach a minimum at ≈ 20 mol% LiF, and the mechanical relaxation shows one peak for the 20 and 30 mol% LiF-glasses and two peaks for the glass with 10 mol% LiF, evidencing both a contribution of F and Li+ ions to the transport. Moreover, the presence of the three partially interacting mobile species F, Na+, Li+ obviously leads to an anionic–cationic mixed ion effect. Applying the Nernst–Einstein equation to the Li+ transport in LiF-containing glasses shows that its mechanism is dissimilar to that in oxide glasses. Calculated short jump distances possibly can be interpreted as an Li+ movement via energetically suitable sites near F ions. Likewise the Nernst–Planck model, successfully applied to the ionic transport in mixed alkali silicate glasses, obviously does also not hold for the present heavy metal fluoride glasses.  相似文献   

13.
Raman spectroscopy was used to study the molecular structure of a series of selected rare earth (RE) silicate crystals including Y2SiO5 (YSO), Lu2SiO5 (LSO), (Lu0.5Y0.5)2SiO5 (LYSO) and their ytterbium‐doped samples. Raman spectra show resolved bands below 500 cm−1 region assigned to the modes of SiO4 and oxygen vibrations. Multiple bands indicate the nonequivalence of the RE O bonds and the lifting of the degeneracy of the RE ion vibration. Low intensity bands below 500 cm−1 are an indication of impurities. The (SiO4)4− tetrahedra are characterized by bands near 200 cm−1 which show a separation of the components of ν4 and ν2, in the 500–700 cm−1 region which are attributed to the distorting bending vibration and in the 880–1000 cm−1 region which are attributed to the symmetric and antisymmetric stretching vibrational modes. The majority of the bands in the 300–610 cm−1 region of Re2SiO5 were found to arise from vibrations involving both Si and RE ions, indicating that there is considerable mixing of Si displacements with Si O bending modes and RE O stretching modes. The Raman spectra of RE silicate crystals were analyzed in terms of the molecular structure of the crystals, which enabled separation of the bands attributed to distinct vibrational units. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The single‐crystal Raman spectra of minerals brandholzite and bottinoite, formula M[Sb(OH)6]2•6H2O, where M is Mg+2 and Ni+2, respectively, and the non‐aligned Raman spectrum of mopungite, formula Na[Sb(OH)6], are presented for the first time. The mixed metal minerals comprise alternating layers of [Sb(OH)6]−1 octahedra and mixed [M(H2O)6]+2/[Sb(OH)6]−1 octahedra. Mopungite comprises hydrogen‐bonded layers of [Sb(OH)6]−1 octahedra linked within the layer by Na+ ions. The spectra of the three minerals were dominated by the Sb O symmetric stretch of the [Sb(OH)6]−1 octahedron, which occurs at approximately 620 cm−1. The Raman spectrum of mopungite showed many similarities to spectra of the di‐octahedral minerals, supporting the view that the Sb octahedra give rise to most of the Raman bands observed, particularly below 1200 cm−1. Assignments have been proposed on the basis of the spectral comparison between the minerals, prior literature and density functional theory (DFT) calculations of the vibrational spectra of the free [Sb(OH)6]−1 and [M(H2O)6]+2 octahedra by a model chemistry of B3LYP/6‐31G(d) and lanl2dz for the Sb atom. The single‐crystal spectra showed good mode separation, allowing most of the bands to be assigned to the symmetry species A or E. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
《Physics letters. A》2001,286(5):332-337
The weak damage induced by 0.8 MeV Si ion implantation in the Al0.25Ga0.75As films epitaxially grown on GaAs substrates was studied by using Rutherford backscattering spectrometry/channeling (RBS/C) and Raman spectroscopy. RBS/C spectra measured from the implanted samples showed rather low damage level induced by the ion implantation with ion dose from 1×1014 to 5×1015 cm−2. The Raman spectra were measured on these samples. Two kinds of phonon modes, GaAs-like and AlAs-like, are observed, which indicate the existence of multiple phonon vibrational modes in the epitaxial Al0.25Ga0.75As films on the GaAs substrate. Compared with the unimplanted sample, the Raman photon peaks for the implanted sample shift gradually to lower energy with the increase of the implantation dose. The strains induced in the implanted layer were also evaluated from the Raman spectra. The result from high resolution double crystal X-ray diffractometry (HRXRD) also verified the evolution of the strains in the implanted layers.  相似文献   

16.
Raman spectroscopy complemented with infrared spectroscopy has been used to study the rare‐earth‐based mineral decrespignyite [(Y,REE)4Cu(CO3)4Cl(OH)5· 2H2O] and the spectrum compared with the Raman spectra of a series of selected natural halogenated carbonates from different origins including bastnasite, parisite and northupite. The Raman spectrum of decrespignyite displays three bands at 1056, 1070 and 1088 cm−1 attributed to the CO32− symmetric stretching vibration. The observation of three symmetric stretching vibrations is very unusual. The position of the CO32− symmetric stretching vibration varies with the mineral composition. The Raman spectrum of decrespignyite shows bands at 1391, 1414, 1489 and 1547 cm−1, whereas the Raman spectra of bastnasite, parisite and northupite show a single band at 1433, 1420 and 1554 cm−1, respectively, assigned to the ν3 (CO3)2− antisymmetric stretching mode. The observation of additional Raman bands for the ν3 modes for some halogenated carbonates is significant in that it shows distortion of the carbonate anion in the mineral structure. Four Raman bands are observed at 791, 815, 837 and 849 cm−1, which are assigned to the (CO3)2−ν2 bending modes. Raman bands are observed for decrespignyite at 694, 718 and 746 cm−1 and are assigned to the (CO3)2−ν4 bending modes. Raman bands are observed for the carbonate ν4 in‐phase bending modes at 722 cm−1 for bastnasite, 736 and 684 cm−1 for parisite and 714 cm−1 for northupite. Multiple bands are observed in the OH stretching region for decrespignyite, bastnasite and parisite, indicating the presence of water and OH units in the mineral structure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The Raman spectra of a series of related minerals of the pinakiolité group have been collected and the spectra related to the mineral structure. These minerals are based upon an isolated BO33− ion. The site symmetry is reduced from D3h to C1. Intense Raman bands are observed for the minerals takeuchiité, pinakiolité, fredrikssonité and azoproité at 1084, 1086, 1086 and 1086 cm−1. These bands are assigned to the ν1 BO33− symmetric stretching mode. Low‐intensity Raman bands are observed for the minerals at 1345, 1748; 1435, 1748; 1435, 1750; and 1436, 1749 cm−1, respectively. One probable assignment is to ν3 BO33− antisymmetric stretching mode. Intense Raman bands of the studied minerals at 712 cm−1 are attributed to the ν2 out‐of‐plane bending mode. Importantly, through the comparison of the Raman spectra, the molecular structure of borate minerals with ill‐defined structures can be obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Tellurates are rare minerals as the tellurate anion is readily reduced to the tellurite ion. Often minerals with both tellurate and tellurite anions are found. An example of such a mineral containing tellurate and tellurite is yecoraite. Raman spectroscopy has been used to study this mineral, the exact structure of which is unknown. Two Raman bands at 796 and 808 cm−1 are assigned to the ν1(TeO4)2− symmetric and ν3(TeO3)2− antisymmetric stretching modes and Raman bands at 699 cm−1 are attributed to the ν3(TeO4)2− antisymmetric stretching mode and the band at 690 cm−1 to the ν1(TeO3)2− symmetric stretching mode. The intense band at 465 cm−1 with a shoulder at 470 cm−1 is assigned the (TeO4)2− and (TeO3)2− bending modes. Prominent Raman bands are observed at 2878, 2936, 3180 and 3400 cm−1. The band at 3936 cm−1 appears quite distinct and the observation of multiple bands indicates the water molecules in the yecoraite structure are not equivalent. The values for the OH stretching vibrations listed provide hydrogen bond distances of 2.625 Å (2878 cm−1), 2.636 Å (2936 cm−1), 2.697 Å (3180 cm−1) and 2.798 Å (3400 cm−1). This range of hydrogen bonding contributes to the stability of the mineral. A comparison of the Raman spectra of yecoraite with that of tellurate containing minerals kuranakhite, tlapallite and xocomecatlite is made. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Secondary ion clusters with mass greater than 700 amu, e.g., K(KF)12+ and up to 27 atoms, e.g., Na(NaF)13+, have been observed in the static SIMS spectra of MF (M = Li, Na, K), NaBF4, and KPF6. The long series of detected cluster ions of the type M(MF)n+ indicates that there is a high degree of stability associated with these clusters. The observation of such clusters in the NaBF4 and KPF6 spectra suggest that there is significant molecular rearrangement occurring in the secondary ion emission process from such salts. The secondary ion Intensities provide a crude fit to the Saha-Eggert equation, yielding an electron temperature of ~12,000 K. The data are consistent with the plasma model of surface ionization in which rearrangement and cluster formation occur in the plasma.  相似文献   

20.
The mineral dussertite, a hydroxy‐arsenate mineral with formula BaFe3+3(AsO4)2(OH)5, has been studied by Raman spectroscopy complemented with infrared spectroscopy. The spectra of three minerals from different origins were investigated and proved to be quite similar, although some minor differences were observed. In the Raman spectra of the Czech dussertite, four bands are observed in the 800–950 cm−1 region. The bands are assigned as follows: the band at 902 cm−1 is assigned to the (AsO4)3−ν3 antisymmetric stretching mode, the one at 870 cm−1 to the (AsO4)3−ν1 symmetric stretching mode, and those at 859 and 825 cm−1 to the As‐OM2 + /3+ stretching modes and/or hydroxyl bending modes. Raman bands at 372 and 409 cm−1 are attributed to the ν2 (AsO4)3− bending mode and the two bands at 429 and 474 cm−1 are assigned to the ν4 (AsO4)3− bending mode. An intense band at 3446 cm−1 in the infrared spectrum and a complex set of bands centred upon 3453 cm−1 in the Raman spectrum are attributed to the stretching vibrations of the hydrogen‐bonded (OH) units and/or water units in the mineral structure. The broad infrared band at 3223 cm−1 is assigned to the vibrations of hydrogen‐bonded water molecules. Raman spectroscopy identified Raman bands attributable to (AsO4)3− and (AsO3OH)2− units. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号