首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this paper, we prepared TiO2@CdS core–shell nanorods films electrodes using a simple and low-cost chemical bath deposition method. The core–shell nanorods films electrodes were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and UV–vis spectrometry techniques. After applying these TiO2@CdS core–shell nanorods electrodes in photovoltaic cells, we found that the photocurrent was dramatically enhanced, comparing with those of bare TiO2 nanorods and CdS films electrodes. Moreover, TiO2@CdS core–shell nanorods film electrode showed better cell performance than CdS nanoparticles deposited TiO2 nanoparticles (P25) film electrode. A photocurrent of 1.31 mA/cm2, a fill factor of 0.43, an open circuit photovoltage of 0.44 V, and a conversion efficiency of 0.8% were obtained under an illumination of 32 mW/cm2, when the CdS nanoparticles deposited on TiO2 nanorods film for about 20 min. The maximum quantum efficiency of 5.0% was obtained at an incident wavelength of 500 nm. We believe that TiO2@CdS core–shell heterostructured nanorods are excellent candidates for studying some fundamental aspects on charge separation and transfer in the fields of photovoltaic cells and photocatalysis.  相似文献   

2.
The optimization of interfacial charge transfer between the dye and the electrolyte is crucial to the design of dye-sensitized solar cells. In this paper, we address the combined use of an ionic liquid crystal electrolyte and amphiphilic ruthenium dyes in dye-sensitized solar cells. The solar cell with an amphiphilic ruthenium dye [Ru(H2dcbpy)(tdbpy)(NCS)2] (H2dcbpy = 4,4′-dicarboxy-2,2′-bipyridine, tdbpy = 4,4′-tridecyl-2,2′-bipyridine), exhibited a short-circuit photocurrent density of 9.1 mA/cm2, an open-circuit voltage of 665 mV and a fill factor of 0.58, corresponding to an overall conversion efficiency of 3.51%. We find that increasing dye alkyl chain length to octadecyl from tridecyl results in lower short-circuit photocurrent density and open-circuit voltage, and the suitable dyes for ionic liquid crystal electrolyte differed completely from those used in liquid and ionic liquid electrolyte cells.  相似文献   

3.
Visible light active hydrogen modified n-type titanium oxide (HM-n-TiO2) thin films were synthesized by thermal oxidation of Ti metal sheet (Alfa Co. 0.25 mm thick) in an electric oven followed by incorporation of hydrogen electrochemically under cathodic polarization at ?1.6 V vs Pt. The photoresponse of the HM-n-TiO2 was evaluated by measuring the rate of water splitting reaction to hydrogen and oxygen in terms of photocurrent density, Jp. The optimized electric oven-made n-TiO2 and HM-n-TiO2 photoelectrodes showed photocurrent densities of 0.2 mA cm?2 and 1.60 mA cm?2, respectively, at a measured potential of ?0.4 V vs Pt at illumination intensity of 100 mW cm?2 from a 150 W xenon lamp. This indicated an eightfold increase in photocurrent density for HM-n-TiO2 compared to oven-made n-TiO2 at the same measured electrode potential. The band-gap energy of HM-n-TiO2 was found to be 2.7 eV compared to 2.82 eV for electric oven-made n-TiO2 and a mid-gap band at 1.67 eV above the valence band was also observed. The HM-n-TiO2 thin film photoelectrodes were characterized using photocurrent density under monochromatic light illumination and UV–Vis spectral measurements.  相似文献   

4.
This paper reports on the application of cornstalks-derived high-surface-area microporous carbon (MC) as the efficient photocathode of dye-sensitized solar cells (DSCs). The photocathode, which contains MC active material, Vulcan XC–72 carbon black conductive agent, and TiO2 binder, was obtained by a doctor blade method. Electronic impedance spectroscopy (EIS) of the MC film uniformly coated on fluorine doped SnO2 (FTO) glass displayed a low charge-transfer resistance of 1.32 Ω cm2. Cyclic voltammetry (CV) analysis of the as-prepared MC film exhibited excellent catalytic activity for I3?/I? redox reactions. The DSCs assembled with the MC film photocathode presented a short-circuit photocurrent density (Jsc) of 14.8 mA cm?2, an open-circuit photovoltage (Voc) of 798 mV, and a fill factor (FF) of 62.3%, corresponding to an overall conversion efficiency of 7.36% under AM 1.5 irradiation (100 mW cm?2), which is comparable to that of DSCs with Pt photocathode obtained by conventional thermal decomposition.  相似文献   

5.
In this study a process has been introduced to replace traditional liquid or solid electrolyte coatings on dye-sensitized photoelectrode in solar cells. This process has more efficient diffusion of electrolyte, hence higher sensitivity. Better interfacial contact between polymer electrolyte and TiO2 photoelectrode had improved electrochemical response and ionic conductivity of cell. Conductivity of this electrode was 9.33 × 10−3 S cm−1 (at room temperature), which is much higher than the using traditional process for addition of electrolytes. It has 0.68 V open-circuit voltage and 3.19 mA cm−2 short-circuit current density. Energy conversion efficiency of this cell was about 37% higher than the cell developed with traditional processes under constant light intensity (45 mW cm−2).  相似文献   

6.
Two novel trialkylsilyl-containing organic sensitizers (JK-53 and JK-54) have been designed and synthesized. Nanocrystalline TiO2–silica-based dye-sensitized solar cells (DSSCs) were fabricated using these dyes. Under standard global AM 1.5 solar conditions, the JK-53-sensitized cell gave a short-circuit photocurrent density (Jsc) of 6.37 mA cm?2, an open-circuit voltage (Voc) of 0.70 V, and a fill factor of 0.74. These values correspond to an overall conversion efficiency (η) of 3.31%. By comparison, the JK-54-sensitized cell resulted in a Jsc of 7.52 mA cm?2, a Voc of 0.71 V, and a fill factor of 0.75. These values give an overall conversion efficiency of 4.01%.  相似文献   

7.
A composite electrode of Ni-ferrite/TiOx/Si(111) was synthesized by grafting Ni2+Fe2+Fe3+–LDH–TiCl3 (LDH: Layered Double Hydroxides) on n-Si(111) surface and calcined under 1100 °C. Photoelectric research results indicated that the electrode had good photovoltaic effects in an electrolyte solution containing 7.6 M HI and 0.05 M I2, while platinum plate was used as counter-electrode. The observed photo-voltages (Upv) and photocurrent densities (jpc) of the electrode were at ?0.75 V and 5.35 mA/cm2, respectively. Compared with electrodes of oxidized n-Si(111) crystal and n-Si(111) wafer covered by Ni-ferrites, jpc of the electrode Ni-ferrite/TiOx/Si(111) was increased greatly.  相似文献   

8.
The present work describes the development of a new strategy to photoelectrochemical detection of L-Dopa at low potential based on oxygen reduction on TiO2 sensitized with iron phthalocyanine (FePc/TiO2). The FePc/TiO2 composite shows a photocurrent 10-fold higher than that of pure TiO2 nanoparticles and it was 4-fold higher than that of FePc exploiting visible light. The band gaps of pure TiO2 nanoparticles, FePc and FePc/TiO2, calculated according to the Kubelka–Munk equation, were 3.22 eV, 3.11 eV and 2.82 eV, respectively. The FePc/TiO2 composite showed a low charge transfer resistance in comparison to the photoelectrode modified with FePc or TiO2. Under optimized conditions, the photoelectrochemical sensor shows a linear response range from 20 up to 190 μmol L 1 with a sensitivity of 31.8 μA L mmol 1 and limit of detection of 1.5 μmol L 1 for the detection of L-Dopa.  相似文献   

9.
Two new triphenylamine-based metal-free organic dyes (TPTDYE-1 and TPTDYE-2) containing 1-(2,6-diisopropylphenyl)-2,5-di(2-thienyl)pyrrole as a new π-conjugated chromophore were synthesized for dye-sensitized solar cell (DSSC) applications. TPTDYE-1 containing three donor groups around the acceptor group was found to show relatively narrow absorption band from 300 nm to 470 nm while TPTDYE-2 having extended π–π delocalization between the donor and acceptor group showed broad absorption band from 300 nm to 550 nm. The electrochemical studies indicate that the HOMO–LUMO energy gap of TPTDYE-1 is considerably wider than that of TPTDYE-2. The dye-sensitized solar cell performance of each dye was investigated, and the TPTDYE-2-sensitized cell was found to show a maximum monochromatic incident photon-to-current conversion efficiency (IPCE) of 75%, a short-circuit photocurrent density (Jsc) of 13.50 mA/cm2, an open-circuit voltage (Voc) of 0.72 V, and a fill factor (FF) of 0.69, corresponding to an overall conversion efficiency of 6.71% under simulated AM 1.5 irradiation (100 mW/cm2). Under the same condition the TPTDYE-1-sensitized cell showed the same IPCE value of 75% with a promising conversion efficiency of 6.00%, a Jsc of 11.11 mA/cm2, a Voc of 0.76 V, and a FF of 0.71.  相似文献   

10.
A high molar extinction coefficient charge transfer sensitizer tetrabutylammonium [Ru(4,-carboxylic acid-4′-carboxylate-2,2′-bipyridine)(4,4′-di-(2-(3,6-dimethoxyphenyl)ethenyl)-2,2′-bipyridine)(NCS)2], is developed which upon anchoring onto nanocrystalline TiO2 films exhibit superior power conversion efficiency compared to the standard sensitizer bistetrabutylammonium cis-dithiocyanatobis(4,4′-dicarboxylic acid-2,2′-bipyridine)ruthenium(II) (N719). The new sensitizer anchored TiO2 films harvest visible light very efficiently over a large spectral range and produce a short-circuit photocurrent density of 18.84 mA/cm2, open-circuit voltage 783 mV and fill factor 0.73, resulting remarkable solar-to-electric energy conversion efficiency (η) 10.82, under Air Mass (AM) 1.5 sunlight. The Time Dependent Density Functional Theory (TDDFT) excited state calculations of the new sensitizer show that the first three HOMOs have ruthenium t2g character with sizable contribution coming from the NCS ligands and the π-bonding orbitals of the 4,4′-di-(2-(3,6-dimethoxyphenyl)ethenyl)-2,2′-bipyridine. The LUMO is a π* orbital localized on the 4,4′-dicarboxylic acid-2,2′-bipyridine ligand.  相似文献   

11.
Multilayer film of laccase, poly-l-lysine (PLL) and multi-walled carbon nanotubes (MWNTs) were prepared by a layer-by-layer self-assembly technique. The results of the UV–vis spectroscopy and scanning electron microscopy studies demonstrated a uniform growth of the multilayer. The catalytic behavior of the modified electrode was investigated. The (MWNTs/PLL/laccase)n multilayer modified electrode catalyzed four-electron reduction of O2 to water, without any mediator. The possible application of the laccase-catalyzed O2 reduction at the (MWNTs/PLL/laccase)n multilayer modified ITO electrode was illustrated by constructing a glucose/O2 biofuel cell with the (MWNTs/thionine/AuNPs)8 GDH film modified ITO electrode as a bioanode and the (MWNTs/PLL/laccase)15 film modified ITO electrode as a biocathode. The open-circuit voltage reached to 700 mV, and the maximum power density achieved 329 μW cm−2 at 470 mV of the cell voltage.  相似文献   

12.
Diverse fused thiophenes with electron-rich and electron-deficient blocks have been synthesized and employed as the π-conjugated spacers of organic dyes for the dye-sensitized solar cells (DSSCs). The effects of these fused thiophenes were investigated by their absorption spectra, electrochemical and photovoltaic properties. For a typical device a maximum power conversion efficiency of 6.11% was obtained under simulated AM 1.5 irradiation (100 mW cm?2): a short-circuit current (JSC) of 14.47 mA cm?2, an open-circuit voltage (VOC) of 670 mV, and a fill factor (FF) of 0.63.  相似文献   

13.
Cu and N-doped TiO2 photocatalysts were synthesized from titanium (IV) isopropoxide via a microwave-assisted sol-gel method. The synthesized materials were characterized by X-ray diffraction, UV-vis diffuse reflectance, photoluminescence (PL) spectroscopy, SEM, TEM, FT-IR, Raman spectroscopy, photocurrent measurement technique, and nitrogen adsorption–desorption isotherms. Raman spectra and XRD showed an anatase phase structure. The SEM and TEM images revealed the formation of an almost spheroid mono disperse TiO2 with particle sizes in the range of 9-17 nm. Analysis of N2 isotherm measurements showed that all investigated TiO2 samples have mesoporous structures with high surface areas. The optical absorption edge for the doped TiO2 was significantly shifted to the visible light region. The photocurrent and photocatalytic activity of pure and doped TiO2 were evaluated with the degradation of methyl orange (MO) and methylene blue (MB) solution under both UV and visible light illumination. The doped TiO2 nanoparticles exhibit higher catalytic activity under each of visible light and UV irradiation in contrast to pure TiO2. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of the titania in the following order: (Cu, N) - codoped TiO2 > N-doped TiO2 > Cu-doped TiO2 > TiO2. COD result for (Cu, N)-codoped TiO2 reveals ∼92% mineralization of the MO dye on six h of visible light irradiation.  相似文献   

14.
We report on the easy and fast immobilization of glucose oxidase (GOD) and laccase by mechanical compression with graphite particles to form disc electrodes. The electrical wiring of GOD and laccase was efficiently carried out by their co-inclusion with ferrocene (Fc) and 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS) respectively. A glucose/air compartment-less biofuel cell was constructed based on the association of GOD-ferrocene-graphite disc and laccase-ABTS – graphite disc electrodes as bioanode and biocathode respectively. Such biofuel cell yielded a power density of 23 μW cm?2 at 0.33 V as well as an open-circuit voltage and a short-circuit current of 0.63 V and 166 μA, respectively.  相似文献   

15.
Solar cells were fabricated using novel bubble-like CdSe nanoclusters sensitized highly ordered titanium oxide nanotube (TiO2 NT) array, prepared by anodization technique. The CdSe sensitization of TiO2 NT arrays was carried out by a chemical bath deposition method with freshly prepared sodium selenosufite, ammonium hydroxide and cadmium acetate dehydrate at different deposition times: 20, 40 and 60 min. The adsorption of CdSe nanoclusters on the upper and inner surface of the TiO2 NT arrays has been confirmed by field emission scanning electron and transmission electron microscopes. The results show the variation in cell a performance with different deposition times (20, 40, and 60 min) of CdSe on TiO2 NT arrays. The solar cell with CdSe, deposited for 60 min, shows reasonably high photovoltaic property compared to the reported results of similar studies. This solar cell shows the maximum photoelectric conversion efficiency of 1.56% (photocurrent of 7.19 mA/cm2; photovoltage of 0.438 V; and fill factor of 49.5%) and average incident photon to current efficiency of 50.2%. The photocurrent, incident photon-current efficiency and electron lifetime have been improved due to the increase of covered area and size of bubble-like CdSe nanoclusters on TiO2 NT arrays with the increase of deposition time.  相似文献   

16.
Zinc-modified nanocrystalline SnO2 electrodes are prepared by chemical treatment of the commercial SnO2 colloid with zinc acetate and their thickness effects on photovoltaic characteristics are investigated. Open-circuit voltage (Voc) and fill factor increase with increasing zinc concentration, while short-circuit photocurrent (Jsc) decreases. The normalized incident photon-to-current conversion efficiency (IPCE) shows that increase of zinc concentration utilizes long wavelength light. Concerning the conversion efficiency, optimal concentration within the present experiment is found to be 10 mol.% Zn2+ with respect to Sn4+. As increasing thickness of the films based on 10 mol.% zinc-modified SnO2 ranging from 0.76 to 8.12 μm, Jsc increases, reaches maximum and then decreases without change in Voc. The highest conversion efficiency of about 3.4% is achieved under 1 sun of AM 1.5 irradiation for the ∼6.3 μm-thick 10 mol.% zinc-modified SnO2 film with Jsc of 9.09 mA/cm2, Voc 600 mV and fill factor 62%.  相似文献   

17.
TiO2 has been widely utilized for various industrial applications such as photochemical cells, photocatalysts, and electrochromic devices. The crystallinity and morphology of TiO2 films play a significant role in determining the overall efficiency of dye-sensitized solar cells (DSSCs). In this study, the preparation of nanostructured TiO2 films by electron beam irradiation and their characterization were investigated for the application of DSSCs. TiO2 films were exposed to 20–100 kGy of electron beam irradiation using 1.14 MeV energy acceleration with a 7.46 mA beam current and 10 kGy/pass dose rates. These samples were characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), and X-ray photoelectron spectroscopy (XPS) analysis. After irradiation, each TiO2 film was tested as a DSSC. At low doses of electron beam irradiation (20 kGy), the energy conversion efficiency of the film was approximately 4.0% under illumination of simulated sunlight with AM 1.5 G (100 mW/cm2). We found that electron beam irradiation resulted in surface modification of the TiO2 films, which could explain the observed increase in the conversion efficiency in irradiated versus non-irradiated films.  相似文献   

18.
Titanium dioxide (TiO2) nanotubes are fabricated into anodic aluminum oxide (AAO) membrane via atomic layer deposition (ALD). For the ALD of TiO2, gaseous precursors, titanium (IV) isopropoxide and water are sequentially applied and chemically reacted with each other. A thickness of nanotubes is precisely controlled by the applied cycle numbers of ALD and the morphology of nanostructures is investigated by SEM and TEM. The amorphous property of TiO2 nanostructures is revealed by XRD and the composition of nanotubes is measured by TEM–EDX. The impurity contents and binding structure of the nanostructures are analyzed by XPS. The electrostatic capacitance of TiO2 nanotubes into AAO is 480 μF/cm2 and it is about 3 times higher compared with AAO membrane (172 μF/cm2).  相似文献   

19.
Photoanodes based on Ti/TiO2 thin films were prepared by the sol–gel method, using either tetraisopropoxide (Ti(OPri)4) or modified tetraisopropoxide, producing electrodes with different sized nanoparticle coatings, termed nanoporous (20 nm) or nanoparticulated (10 nm) electrodes. The anatase form dominated the composition of the nanoparticulated electrode, which presented a higher surface area, a flat band potential shift of ?160 mV and a 50% improvement in photoactivity, compared to the nanoporous electrode. 100% color removal, and 75% mineralization, of indigo carmine dye were achieved after 15 min of photoelectrocatalytic treatment using a nanoparticulated Ti/TiO2 electrode operated at a current density of 0.4 mA cm?2. Our findings indicate that the use of nanoparticulated electrodes, under UV irradiation and with controlled current density, is an efficient alternative for the removal of food dye contaminants during wastewater treatment.  相似文献   

20.
A novel all-solid-state thin-film-type rechargeable lithium-ion battery employing in situ prepared both positive and negative electrode materials is proposed. A lithium-ion conducting solid electrolyte sheet of Li2O–Al2O3–TiO2–P2O5-based glass–ceramic manufactured by OHARA Inc. (OHARA sheet) was used as the solid electrolyte, which was sandwiched by Cu and Mn metal films. The Cu/OHARA sheet/Mn layer became an all-solid-state lithium-ion battery after applying d.c. 16 V to the layer, and the resultant battery operated at 0.3–0.8 V with reversible capacity of 0.45 μAh cm?2. High voltage battery was successfully prepared by applying the d.c. high voltage to a five-series of Cu/OHARA sheet/Mn layer, resulting in all-solid-state battery operating at 1.5–4.0 V. The proposed fabrication process will become a new technology to develop advanced all-solid-state rechargeable lithium-ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号