首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorapatite (FAp) whiskers were prepared by using Molten Salt Synthesis (MSS) technique. β‐tricalcium phosphate (TCP) and various fluorine salts, along with potassium sulphate as a flux salt were used as starting materials for preparing FAp whiskers. Effects of flux to powder weight ratio, temperature and soaking time on the morphology were studied. The optimum temperature to obtain FAp whiskers was found to be 1175°C. The phase purity of the prepared FAp whiskers were confirmed by powder X‐ray diffraction and FTIR spectra, and the whiskers were further characterized by laser Raman spectra, chemical analysis and DTA/TGA thermal analysis. The morphology of the FAp whiskers were investigated by scanning electron microscope (SEM) analysis. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
以硅溶胶、葡萄糖和TiO2为初始原料,采用碳热还原法在氩气气氛下合成SiC-TiC复合粉末.探讨了不同反应温度对SiC-TiC复合粉末的物相组成、粒径分布、显微形貌等方面的影响.采用X-射线衍射仪(XRD)、激光粒度分析仪、扫描电镜(SEM)等手段对所合成的SiC-TiC复合粉末进行表征.研究结果表明:SiC-TiC复合粉末适宜的合成条件为在1550℃保温2h.在1550℃下合成的SiC-TiC复合粉末主要由少量的片状颗粒、一定量的晶须以及大量的近似球状颗粒构成.粉末样品中SiC晶须的生长机理遵循气-固(VS)机理.  相似文献   

3.
本文以高岭土和纳米碳黑颗粒为原料,采用碳热还原原位合成工艺制备SiC_w/Al_2O_3复相陶瓷粉体.通过研究合成温度、保温时间、原料配比以及氩气流量对合成产物的影响,借助XRD、SEM等技术手段进行测试表征,得到了合成工艺的最优参数,并探讨了碳热还原反应的机理.实验结果表明:高岭土与碳黑的摩尔比为1∶ 8,氩气流量为80 mL/min,在1500 ℃下保温2 h,可获得纯净的SiC_w和Al_2O_3复相陶瓷粉体,SiC晶须的平均直径为300 nm左右,长度大于6 μm,长径比大于20,SiC晶须表面光洁,与氧化铝颗粒呈均匀分布.碳热还原高岭土合成SiC_w/Al_2O_3,包括碳热还原SiO_2 与碳热还原莫来石两个阶段,碳化硅晶须的生成遵循气-固(V-S)生长机理.  相似文献   

4.
Single‐crystal and uniform copper aluminum borate whiskers have been synthesized by heating a mixture of boric acid, copper sulfate and aluminum sulfate with potassium sulfate as flux at 870 °C for 4 h. The synthesized whiskers exhibit a well‐crystallized, one‐dimensional structure with diameters ranging from 100 nm to 5 μm, lengths from 5 to 100 μm. Heating temperature and flux addition affect the aspect ratio and morphology of the copper aluminum borate whiskers. A possible growth mechanism of the whiskers is proposed. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
通过KDC方法成功制备了六钛酸钾(K2Ti6O13)晶须,并进行了热重分析和差热分析,研究烧结时间和烧结温度对K2Ti6O13晶须结晶过程的影响,通过X射线衍射分析了K2Ti6O13晶须的相组成和晶体指数.此外,通过扫描电子显微镜和透射电子显微镜研究晶须的微观结构,揭示了K2Ti6O13晶须的生长机理.  相似文献   

6.
以白云石精制液和二氧化碳为实验原料,采用气液接触法制备碳酸钙晶须。研究了杂质离子Mg2+、NH+4和NO-3对碳酸钙晶须长径比和形貌的影响。采用扫描电镜(SEM)和X射线衍射仪(XRD)对样品的形貌和晶体结构进行表征。结果表明:NH+4浓度在0.3 mol/L,Mg2+浓度在0.05 mol/L,NO-3浓度在0.2 mol/L的情况下碳酸钙晶须的形貌和长径比最佳,其中长径比最高可以达到25以上;最后再结合晶体生长理论,阐明了碳酸钙晶须的结晶过程和生长机理。  相似文献   

7.
Single crystalline strontium chloroborate (Sr2B5O9Cl) whiskers with uniform diameter have been synthesized by a facile route based on the calcination of precursor. The precursor was prepared by the sedimentation reaction between SrCl2 and Na2B4O7 aqueous solution. The products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectrum (FT‐IR). An optimal synthesis temperature for preparing Sr2B5O9Cl whiskers was obtained, and the possible formation process was also presented.  相似文献   

8.
ZnO nanostructures with various morphologies including rod‐like, sheet‐like, needle‐like and flower‐like structures were successfully synthesized via a fast and facile microwave‐assisted hydrothermal process. Reaction temperature, reaction time and the addition of NaOH were adjusted to obtain ZnO with different morphologies. Scanning electron microscopy(SEM), transmission electron microscope(TEM), X‐ray diffraction (XRD) and ultraviolet spectrophotometer (UV) were used to observe the morphology, crystal structure, ultraviolet absorption and photocatalytic activity of the obtained ZnO. The results indicated that growth rate of ZnO nanostructure along [001] direction was more sensitive to temperature compared with those along [101] and [100] directions. The competition between anionic surfactant and OH played an important role in the formation of ZnO with various morphologies. Flower‐like ZnO had better ultraviolet absorption property and excellent photocatalytic activity than ZnO in the other morphologies. On the basis of the above results, a possible growth mechanism for the formation of ZnO nanostructures with different morphologies was described.  相似文献   

9.
Large‐scale SiC nanowires were prepared by directly annealing polysiloxane and wood powder composites without catalyst assistant at 1420 °C under argon atmosphere. SiC nanowires are up to tens of micrometers in length and the diameters are in the range of 30–150 nm. Most nanowires are smooth and straight in morphology. High‐resolution TEM image shows that SiC nanowires grow along the [111] direction. The vapor–solid mechanism was proposed to explain the growth procedure of SiC nanowires. The present work provides an efficient and simple strategy for large‐scale production of SiC nanowires.  相似文献   

10.
《Journal of Non》2005,351(46-48):3593-3599
Monodispersed porous silica microspheres are synthesized by the hydrolysis and condensation of tetraethoxysilane (TEOS) in a water–ethanol mixed solution containing 1-alkylamine as a template and hydrolysis catalyst. The as-prepared products were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), small angle X-ray diffraction (SAXRD), Fourier transform infrared spectroscopy (FTIR) and nitrogen adsorption, respectively. It was found that the alkyl chain length of 1-alkylamine and calcination temperature have an obvious influence on the particle size, morphology, specific surface area and pore structure of the as-prepared silica powder. The specific surface area, porosity and pore volume increased with increasing calcination temperature. Further observation showed that at 600 °C, with increasing the alkyl chain length of template from C12 to C18, the specific surface area decreased and the pore size, porosity and pore volume increased. This research may provide new insight into the control of morphology and pore structures of oxide materials.  相似文献   

11.
Two kinds of hollow twinning ZnO microstructures were synthesized through a simple hydrothermal method without additional templates or any surfactants. Dumbbell‐like and shuttle‐like ZnO microstructures with hollows were obtained by changing the materials source. The products were characterized by X‐ray power diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high‐resolution transmission electron microscopy (HRTEM). It was found that different precursors may be responsible for the formation of two different morphologies. Based on the time‐dependent experiments, we investigated the growth process of these hollow twinning structures and found the “Ostwald‐ripening process” played an important role. The interesting point of this growth process was that the interface of the two twinning structure performed as the activate center where the Ostwald‐ripening process carried out. We also investigated the luminescent properties of the as‐obtained products by photoluminescence (PL) spectroscopy. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Ti-Al-Nb2O5系原位合成Al2O3晶须的形成机理分析   总被引:5,自引:0,他引:5  
王芬  艾桃桃 《人工晶体学报》2006,35(6):1195-1199
本文研究了以粉埋法原位合成的Al2O3晶须的形态和反应过程以及晶须的生长机理.通过物相测试表明产物由Al2O3、TiAl3、NbAl3和少量的AlN相组成,SEM结合EDS分析表明原位合成了直径小于100nm的Al2O3晶须,晶须呈棉絮状分布于基体交界处.基于铝的过剩,TiAl3相是Ti-Al界面的唯一产物.Ti与O2以反应时间短的动力学势优先形成的TinOm中间产物是Al2O3晶须生成的控制步骤.Nb2O5与铝液的双效复合催化作用,提高了晶须的生成速率;同时Al的用量因AlN的生成而减小,导致生成晶须的催化活性点减小,而扩散到每个活性点周围的TinOm及Nb2O5浓度增加,导致晶须分布密而均匀.Al2O3晶核在催化剂的作用下以螺旋位错生长形成长径比较为理想的Al2O3晶须.  相似文献   

13.
4ZnO·B2O3·H2O whiskers were prepared from 2ZnO·3B2O3·3.5H2O under hydrothermal process at 160 °C for 10 h. The synthesized product was characterized by XRD, SEM, TG‐DSC and FT‐IR. SEM results showed that the synthesized 4ZnO·B2O3·H2O whiskers' length was about 3–10 μm and the diameter was 0.2–0.3 μm. Further study on the whiskers' growth process and mechanism showed that the formation of the whiskers went through three stages and the morphology of 4ZnO·B2O3·H2O changed from irregular particles to rod‐like structures and finally to whiskers. The variation of the morphology of the 4ZnO·B2O3·H2O whisker with the concentration of the starting material was investigated. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Cadmium sulfide (CdS) nanosheets were synthesized by an environment friendly, “green” organic molten salt (OMS) method at 220 °C. The as‐synthesized products were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS), respectively. The XRD results reveal that the as‐synthesized CdS nanosheets are of the hexagonal wurtzite structure and the CdS nanosheets grow along the c‐axis. The SEM results indicate that the diameters and thickness of the CdS nanosheets are about 20–40 nm and 5–10 nm, respectively. The optical properties of the CdS nanosheets were investigated by ultraviolet–visible (UV‐Vis) spectroscopy and photoluminescence (PL) spectroscopy. The ultraviolet–visible spectrum exhibits two excitonic peaks with a step‐like absorption and the photoluminescence spectrum shows a green emission peak centered at around 524 nm. A possible growth mechanism of CdS nanosheets was discussed.  相似文献   

15.
Uniform capsule‐like α‐Fe2O3 particles were synthesized via a simple hydrothermal method, employing FeCl3 and CH3COONa as the precursors and sodium dodecyl sulfate (SDS) as soft template. X‐ray powder diffraction (XRD), field emission scanning electron microscopy (FE‐SEM), transmission electron microscopy (TEM), and high‐resolution transmission electron microscopy were used to characterize the structure of synthesized products. Some factors influencing the formation of capsule‐like α‐Fe2O3 particles were systematically investigated, including different kinds of surfactants, the concentration of SDS, and reaction times. The investigation on the evolution formation reveals that SDS was critical to control the morphology of final products, and a possible five‐step growth mechanism was presented by tracking the structures of the products at different reaction stages.  相似文献   

16.
A new kind of whisker, which has not been previously reported in the literature, was grown on membranes which were in contact with a saturated aqueous solution of sodium acetate, using several techniques. Cellulose acetate membranes were used in all the cases and growth was successful at 25 ± 2°C and 45–55% relative humidity. A dense colony of whiskers, sometimes stuck together in bundles, usually up to 5 cm in length and ranging in width from 0.3–100 μm, developed within 72 h of growth. The whiskers were identified as sodium acetate tri-hydrate by means of Debye-Scherrer X-ray powder method. Laue transmission photographs indicated the existence of twin crystals within the individual single crystal whiskers as proved by electron diffraction in TEM. Some whiskers included internal and external channels, and there were several secondary effects, such as thickening in the middle of a whisker, formation of arrow-heads or spirals at the tips and various modes of branching. The whisker morphology and the various growth phenomena may be explained as a whisker growth process from their bases, when we consider a continuous crystallization from material which is supplied through and over the membrane.  相似文献   

17.
In this paper, a template free method has been employed to fabricate porous ZnO. Brick shaped precursor was first synthesized by a mild hydrothermal process. Accompanied with the decomposition of the precursor during the subsequent annealing treatment, porous ZnO with the inherited morphology of the precursor was obtained. The as‐prepared products were characterized by X‐ray diffraction (XRD) and scanning electron microscopy (SEM). It exhibited that the porous hierarchical frame consists of nano‐sheets with wurtzite‐type. The size of the pores as well as the size of the particles varied with the annealing temperature. Mechanism speculation showed that the crystal‐aggregation in the growth process of the precursor is the key to the establishment of pore structure. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
Indium tin oxide (ITO) whiskers were grown by VLS (vapour-liquid-solid) mechanism, using the electron shower method. The whiskers were grown above 200 °C, and the deposition rate was above 0.6 nm/s. The electron shower controlled the size of the whiskers, and the size was 30 nm in diameter and 600 nm in length. The whiskers grew along the substrate at t < 300 s, but grew in a direction perpendicular to the substrate at t > 300 s. When the ITO whiskers grown along the substrate were used as NO2 gas sensor, the sensitivity was 340, and about 300 times higher than those of the whiskers grown in a direction perpendicular to the substrate and plate-like ITO crystallites.  相似文献   

19.
Zirconium‐doped ceria hollow slightly‐truncated nano‐octahedrons (HTNOs) (Ce1‐xZrxO2) were synthesized by a one‐pot, facile hydrothermal method. The morphology and crystalline structure were characterized with powder X‐ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and the high resolution transmission electron microscopy (HRTEM). The composition and chemical valence on the surface of the as‐prepared Ce1‐xZrxO2 powders were detected by X‐ray photoelectron spectroscopy (XPS) and energy dispersive spectrometry (EDS). The surface area and pore size distribution of as‐obtained Zr‐doped ceria HTNOs were measured by N2 adsorption‐desorption measurement. Mechanisms for the growth of Zr‐doped ceria HTNOs are proposed as both oriented attachment and Ostwald ripening process and the formation of the hollow structure is strongly dependent on the addition of Zr4+ ions. Furthermore, the as‐obtained Zr‐doped ceria HTNOs revealed superior catalytic activity and thermal stability toward CO oxidation compared to pure ceria. It may provide a new path for the fabrication of inorganic hollow structures on introducing alien metal ions.  相似文献   

20.
Single‐crystalline Zinc oxide (ZnO) nanorods were firstly synthesized on gold‐coated Si substrate via a simple thermal reduction method from the mixture of ZnO and Al powder. The growth process was carried out in a quartz tube at different temperature (550‐700 °C) and at different oxygen partial pressure. Their structure properties were investigated by X‐ray diffraction (XRD), scanning electron microscope (SEM), X‐ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The length of the as‐prepared ZnO nanorods was up to several micrometers and their diameters were about 130 nm. The X‐ray diffraction patterns, transmission electron microscopic images, and selective area electron diffraction patterns indicate that the one‐dimensional ZnO nanorods are a pure Single‐crystal and preferentially oriented in the [0001] direction. The reaction mechanism of ZnO nanorods was proposed on the basis of experimental data. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号