共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal and flow transport in an inductively heated Czochralski crystal growth furnace during a crystal growth process is investigated numerically. The temperature and flow fields inside the furnace, coupled with the heat generation in the iridium crucible induced by the electromagnetic field generated by the RF coil, are computed. The results indicate that for an RF coil fixed in position during the growth process, although the maximum value of the magnetic, temperature and velocity fields decrease, the convexity of the crystal‐melt interface increases for longer crystal growth lengths. The convexity of the crystal‐melt interface and the power consumption can be reduced by adjusting the relative position between the crucible and the induction coil during growth. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
2.
In this paper, the role of seed rotation on the characteristics of the two‐dimensional temperature and flow field in the oxide Czochralski crystal growth system has been studied numerically for the seeding process. Based on the finite element method, a set of two‐dimensional quasi‐steady state numerical simulations were carried out to analyze the seed‐melt interface shape and heat transfer mechanism in a Czochralski furnace with different seed rotation rates: ωseed = 5‐30 rpm. The results presented here demonstrate the important role played by the seed rotation for influencing the shape of the seed‐melt interface during the seeding process. The seed‐melt interface shape is quite sensitive to the convective heat transfer in the melt and gaseous domain. When the local flow close to the seed‐melt interface is formed mainly due to the natural convection and the Marangoni effect, the interface becomes convex towards the melt. When the local flow under the seed‐melt interface is of forced convection flow type (seed rotation), the interface becomes more concave towards the melt as the seed rotation rate (ωseed) is increased. A linear variation of the interface deflection with respect to the seed rotation rate has been found, too. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
3.
For the seeding process of oxide Czochralski crystal growth, influence of the crucible bottom shape on the heat generation, temperature and flow field of the system and the seed‐melt interface shape have been studied numerically using the finite element method. The configuration usually used in a real Czochralski crystal growth process consists of a crucible, active afterheater, induction coil with two parts, insulation, melt, gas and seed crystal. At first, the volumetric distribution of heat inside the metal crucible and afterheater inducted by the RF‐coil was calculated. Using this heat generation in the crucible wall as a source the fluid flow and temperature field of the entire system as well as the seed‐melt interface shape were determined. We have considered two cases, flat and rounded crucible bottom shape. It was observed that using a crucible with a rounded bottom has several advantages such as: (i) The position of the heat generation maximum at the crucible side wall moves upwards, compared to the flat bottom shape. (ii) The location of the temperature maximum at the crucible side wall rises and as a result the temperature gradient along the melt surface increases. (iii) The streamlines of the melt flow are parallel to the crucible bottom and have a curved shape which is similar to the rounded bottom shape. These important features lead to increasing thermal convection in the system and influence the velocity field in the melt and gas domain which help preventing some serious growth problems such as spiral growth. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
4.
For the seeding process of oxide Czochralski crystal growth, the flow and temperature field of the system as well as the seed‐melt interface shape have been studied numerically using the finite element method. The configuration usually used initially in a real Czochralski crystal growth process consists of a crucible, active afterheater, induction coil with two parts, insulation, melt, gas and non‐rotating seed crystal. At first the volumetric distribution of heat inside the metal crucible and afterheater inducted by the RF coil was calculated. Using this heat source the fluid flow and temperature field were determined in the whole system. We have considered two cases with respect to the seed position: (1) before and (2) after seed touch with the melt. It was observed that in the case of no seed rotation (ωseed = 0), the flow pattern in the bulk melt consists of a single circulation of a slow moving fluid. In the gas domain, there are different types of flow motion related to different positions of the seed crystal. In the case of touched seed, the seed‐melt interface has a deep conic shape towards the melt. It was shown that an active afterheater and its location with respect to the crucible, influences markedly the temperature and flow field of the gas phase in the system and partly in the melt. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
5.
A. Voigt C. Weichmann J. Nitschkowski E. Dornberger R. Hlz 《Crystal Research and Technology》2003,38(6):499-505
The formation of grown‐in defects in silicon crystals is controlled by the concentration of intrinsic point defects. Under steady state conditions the type of the prevailing point defect species is linked to the ratio of pull rate and temperature gradient in the crystal at the solidification front. It has been shown that this ratio as well as computed point defect distributions are in good agreement with experimental data. In this paper we compare a coupled transient heat transfer and transient point defect transport model with quasi steady state simulations at various time steps. Both simulations show the same qualitative results, quantitative differences in temperature are less than 1 %. But already for constant pull rates the defect distributions show qualitative differences between transient and quasi steady state simulations. Therefore, for a detailed understanding how defects are related to growth conditions, the thermal history should not be neglected. 相似文献
6.
In order to understand the effects of the thermophysical properties of the melt on the transport phenomena in the Czochralski (Cz) furnace for the single crystal growth of silicon, a set of global analyses of momentum, heat and mass transfer in small Cz furnace (crucible diameter: 7.2 cm, crystal diameter: 3.5 cm, operated in a 10 Torr argon flow environment) was carried out using the finite‐element method. The global analysis assumed a pseudosteady axisymmetric state with laminar flow. The results show that different thermophysical properties will bring different variations of the heater power, the deflection of the melt/crystal interface, the axial temperature gradient in the crystal on the center of the melt/crystal interface and the average oxygen concentration along the melt/crystal interface. The application of the axial magnetic field is insensitive to this effect. This analysis reveals the importance of the determination of the thermophysical property in numerical simulation. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
7.
For accurate prediction of carbon and oxygen impurities in a single crystal produced by the Czochralski method, global simulation of coupled oxygen and carbon transport in the whole furnace was implemented. Both gas-phase transportation and liquid-phase transportation of oxygen and carbon were considered. With five chemical reactions considered, SiO and CO concentrations in gas and C and O atom concentrations in silicon melt were solved simultaneously. The simulation results show good agreement with experimental data. 相似文献
8.
Large eddy simulation model is used to simulate the fluid flow and heat transfer in an industrial Czochralski crystal growth system. The influence of Marangoni convection on the growth process is discussed. The simulation results agree well with experiment, which indicates that large eddy simulation is capable of capturing the temperature fluctuations in the melt. As the Marangoni number increases, the radial velocity along the free surface is strengthened, which makes the flow pattern shift from circumferential to spiral. At the same time, the surface tension reinforces the natural convection and forces the isotherms to curve downwards. It can also be seen from the simulation that a secondary vortex and the Ekman layer are generated. All these physical phenomena induced by Marangoni convection have great impacts on the shape of the growth interface and thus the quality of the crystal. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
9.
The thermal condition is one the of most important control parameters for crystal growth. In this paper we present an effective numerical method in detail for optimizing thermal conditions in multi‐zone crystal growth facilities, especially for crystal growth by the float zone (FZ) technique. A furnace function Ω is introduced to integrate the character of a growth furnace into a linear equation system. The desired power distribution can be therefore approached by solving the linear equation system iteratively. An expert systemlike algorithm has been developed in order to obtain a more suitable solution for practical applications. This method was used to investigate thermal parameters for experiments of SiGe/GeSi single crystal growth by the FZ technique. It is an individual program which can be combined with any commercial finite element/finite volume (FE/FV) program such as FIDAPTM. 相似文献
10.
Takao Abe Toru Takahashi Koun Shirai 《Progress in Crystal Growth and Characterization of Materials》2019,65(1):36-46
It has been known that, in growing silicon from melts, vacancies (Vs) predominantly exist in crystals obtained by high-rate growth, while interstitial atoms (Is) predominantly exist in crystals obtained by low-rate growth. To reveal the cause, the temperature distributions in growing crystal surfaces were measured. From this result, it was presumed that the high-rate growth causes a small temperature gradient between the growth interface and the interior of the crystal; in contrast, the low-rate growth causes a large temperature gradient between the growth interface and the interior of the crystal. However, this presumption is opposite to the commonly-accepted notion in melt growth. In order to experimentally demonstrate that the low-rate growth increases the temperature gradient and consequently generates Is, crystals were filled with vacancies by the high-rate growth, and then the pulling was stopped as the extreme condition of the low-rate growth. Nevertheless, the crystals continued to grow spontaneously after the pulling was stopped. Hence, simultaneously with the pulling-stop, the temperature of the melts was increased to melt the spontaneously grown portions, so that the diameters were restored to sizes at the moment of pulling-stop. Then, the crystals were cooled as the cooling time elapsed, and the temperature gradient in the crystals was increased. By using X-ray topographs before and after oxygen precipitation in combination with a minority carrier lifetime distribution, a time-dependent change in the defect type distribution was successfully observed in a three-dimensional manner from the growth interface to the low-temperature portion where the cooling progressed. This result revealed that Vs are uniformly introduced in a grown crystal regardless of the pulling rate as long as the growth continues, and the Vs agglomerate as a void and remain in the crystal, unless recombined with Is. On the other hand, Is are generated only in a region where the temperature gradient is large by low-rate growth. In particular, the generation starts near the peripheral portion in the vicinity of the solid–liquid interface. First, the generated Is are recombined with Vs introduced into the growth interface, so that a recombination region is always formed which is regarded as substantially defect free. Excessively generated Is after the recombination agglomerate and form a dislocation loop region. Unlike conventional Voronkov's diffusion model, Is hardly diffuse over a long distance. Is are generated by re-heating after growth.[In a steady state, the crystal growth rate is synonymous with the pulling rate. Meanwhile, when an atypical operation is performed, the pulling rate is specifically used.]This review on point defects formation intends to contribute further silicon crystals development, because electronic devices are aimed to have finer structures, and there is a demand for more perfect crystals with controlled point defects. 相似文献
11.
By the hand of a system-oriented steady-state model of the GaSb crystal growth (CZ and LEC) the crystal-melt interface, the heat losses due to cooling, and the required crucible temperatures are calculated as a response to the boundary conditions for temperature and heat flows, and to the chosen geometry. Of special interest is a phantom of an after-heater influencing the cooling of the crystal. 相似文献
12.
C. Stelian 《Crystal Research and Technology》2013,48(9):603-611
Cadmium telluride (CdTe) and his compounds play a leading role in X‐ray and γ‐ray detector technology. One of the most used methods for growing these crystals is the travelling heater method (THM). The ingots obtained by using this technique show excellent composition uniformity, but the structural quality is affected by the presence of large grains which appear because of large curvatures of the solid‐liquid interface during the solidification process. This numerical work investigate the thermal field and melt convection in CdTe processing by THM in order to elucidate the mechanism of growing these crystals. The influence of the furnace geometry on the interface shape and temperature gradient in liquid is analyzed for samples with small (1 cm) and large (5 cm) diameters. The computations include flow effects on thermal field in the melted zone. The thermal conditions are optimized for THM growth of CdTe crystals at high solidification temperatures. A new multi‐zone furnace configuration for growing crystals of large diameter and flattened interface is proposed in this work. 相似文献
13.
H. S. Fang J. Tian S. Wang Y. Long M. J. Zhang C. J. Zhao 《Crystal Research and Technology》2014,49(5):323-330
Crystal quality during Czochralski (Cz) growth is influenced significantly by the convexity of solid/liquid (S/L) interface, which is related to operating conditions, such as Radio‐Frequency (RF) coil position, crystal rotation and crucible rotation. Generally, a flat interface shape is preferred for high‐quality crystal growth. It is difficult to achieve the optimized conditions even from numerical modeling due to the large computational load from examining all of the affecting factors. Orthogonal design/test method, fortunately, provides an efficient way to organize the study of multiple factors with the minimization of computational load. In the paper, this method is adopted to investigate the affecting factors of Cz‐sapphire single crystal growth based on the coupled calculation of thermal field and melt flows. The orthogonal analysis clearly reveals the optimized growth conditions to achieve a relative flat S/L interface under the current ranges of the parameters. 相似文献
14.
C. M. Ruiz E. Saucedo L. Fornaro V. Bermúdez E. Diguez 《Crystal Research and Technology》2004,39(10):886-891
In this work, we present a theoretical analysis of the behaviour of the temperature profile for the Modified Markov Method. We have assumed different materials and different thicknesses for the insulating element. Comparison of preliminary results with experimental evidences, demonstrate us the reliability of our model. Discussion among our calculated results are provided and future outlooks for the experimental work are fixed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
15.
In this report, we present the usage of a second rank cylindrical conductivity tensor which we derived to simulate the crystal growth processes of a layered compound GaSe in a cylindrical enclosure by directional solidification. Use of such a tensor is inevitable in the simulations of the growth of highly anisotropic crystals having layered structure, since the crystallographic orientation of the grown material is not necessarily aligned with the ampoule symmetry. Using the finite difference control volume approach in 3D, we solved transient heat conduction equation for a highly anisotropic solid in a cylindrical enclosure. We obtained sloped thermal fields and isothermal surfaces and the magnitudes of the slopes are strong functions of both azimuthal angle and growth orientation. The results showed that the orientation of the crystallographic axes of GaSe in the enclosure is quite effective in the steady and the transient fields, isotherms, and axial and radial temperature gradient within the material. Increase of Bi number decreases the magnitude of the slope of isothermal surface. Anisotropy of the conductivity seems to be effective in the orientation of the growth direction of the resulting crystal within the cylindrical ampoule. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
16.
Carbon contamination in single crystalline silicon is detrimental to the minority carrier lifetime, one of the critical parameters for electronic wafers. In order to study the generation and accumulation of carbon contamination, transient global modeling of heat and mass transport was performed for the melting process of the Czochralski silicon crystal growth. Carbon contamination, caused by the presence of carbon monoxide in argon gas and silicon carbide in the silicon feedstock, was predicted by the fully coupled chemical model; the model included six reactions taking place in the chamber. A simplified model for silicon carbide generation by the reaction between carbon monoxide and solid silicon was proposed using the closest packing assumption for the blocky silicon feedstock. The accumulation of carbon in the melted silicon feedstock during the melting and stabilization stages was predicted. Owing to this initial carbon content in the melt, controlling carbon contamination before the growth stage becomes crucial for reducing the carbon incorporation in a growing crystal. 相似文献
17.
Mohd Anis G. G. Muley M. D. Shirsat S. S. Hussaini 《Crystal Research and Technology》2015,50(5):372-378
Optically transparent formic acid (FA) doped potassium dihydrogen phosphate (KDP) crystal of dimension 21×15×9 mm3 has been grown by slow evaporation solution technique (SEST). The X‐ray diffraction (XRD) technique was used to confirm the cell parameters and the shifts in peak positions of identified reflecting planes. The incorporation of FA in KDP has been qualitatively analyzed by fourier transform infrared analysis. The UV‐visible absorption spectrum of crystals has been recorded in the range of 200 to 900 nm and the doped KDP crystal is found to have improved optical parameters than pure KDP. The color centered photoluminescence emission spectrum of grown crystal has been illustrated in visible region. The mechanical behavior of pure and doped KDP crystal has been investigated using the Vicker's microhardness analyzer and hardness parameters have been calculated. The effect of FA on thermal stability of KDP crystal was examined by means of thermogravimetric and differential thermal analysis. The temperature dependent dielectric behavior of crystals was studied. 相似文献
18.
X. J. Chen L. J. Liu H. Tezuka Y. Usuki K. Kakimoto 《Crystal Research and Technology》2007,42(10):971-975
A global simulation model is applied for a silicon carbide growth system heated by induction coils. A finite‐volume method (FVM) and a global model are applied to solve the equations for electromagnetic field, conductive and radiative heat transfer. The growth rate is predicted by Hertz‐Knudsen equation and one‐dimensional mass transfer equation. Further, simulations for five different coil positions are carried out to investigate the effects of coil position on temperature distribution in the furnace. The numerical results reveal that the variation of temperature in the radial direction along the substrate surface and the temperature difference between the powder and substrate are greatly affected by the coil position. The predicted growth rate along the substrate surface for five coil positions is also studied. Finally, a reasonable range of coil positions maintaining a balance between large‐diameter crystal, high growth rate, temperature limitation of material and lower electrical power consumption is obtained. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
19.
K. Kakimoto L. Liu H. Miyazawa S. Nakano D. Kashiwagi X. J. Chen Y. Kangawa 《Crystal Research and Technology》2007,42(12):1185-1189
Heat and mass transfer during crystal growth of bulk Si and nitrides by using numerical analysis was studied. A three‐dimensional analysis was carried out to investigate temperature distribution and solid‐liquid interface shape of silicon for large‐scale integrated circuits and photovoltaic silicon. The analysis enables prediction of the solid‐liquid interface shape of silicon crystals. The result shows that the interface shape became bevel like structure in the case without crystal rotation. We also carried out analysis of nitrogen transfer in gallium melt during crystal growth of gallium nitride using liquid‐phase epitaxy. The result shows that the growth rate at the center was smaller than that at the center. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
20.
E. N. Kolesnikova Yu. A. Polovko V. S. Yuferev A. I. Zhmakin 《Journal of Crystal Growth》1997,180(3-4):578-586
In contrast with the generally accepted viewpoint, it is shown that the Coriolis force caused by rotation of an orbital station can appreciably affect natural convection and impurity distribution during the growth of crystals from a melt in orbital flight conditions. 2D and 3D steady and oscillatory convection in a rectangular enclosure is considered. The resonance phenomenon arising due to the interaction of the Coriolis force and harmonic oscillations of the gravity force is demonstrated. It is shown that for moderate values of the Ekman number the Coriolis force suppresses convection in one direction and amplifies it in the other, which in turn results in deformation of the impurity distribution over the cross-section of the crystal. 相似文献