首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wurtzite ZnO thin films were prepared on sapphire substrate by metal organic chemical vapor deposition (MOCVD). Raman scattering studies on different crystallographic textures were performed in the backscattering geometry, and polarization effect is investigated in different configurations and . ZnO Raman modes are investigated in each texture. In the case of ZnO thin film deposed on r‐() sapphire plane and using backscattering geometry, new Raman line was observed at 390 cm−1 because this mode has not been noticed in this geometry. It is shown that the frequencies of the quasi‐phonon modes of the examined thin film are in good agreement with the theoretical values calculated within the framework of Loudon model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
We revisit the assignment of Raman phonons of rare‐earth titanates by performing Raman measurements on single crystals of O18 isotope‐rich spin ice and nonmagnetic pyrochlores and compare the results with their O16 counterparts. We show that the low‐wavenumber Raman modes below 250 cm−1 are not due to oxygen vibrations. A mode near 200 cm−1, commonly assigned as F2g phonon, which shows highly anomalous temperature dependence, is now assigned to a disorder‐induced Raman active mode involving Ti4+ vibrations. Moreover, we address here the origin of the ‘new’ Raman mode, observed below TC ~ 110 K in Dy2Ti2O7, through a simultaneous pressure‐dependent and temperature‐dependent Raman study. Our study confirms the ‘new’ mode to be a phonon mode. We find that dTC/dP = + 5.9 K/GPa. Temperature dependence of other phonons has also been studied at various pressures up to ~8 GPa. We find that pressure suppresses the anomalous temperature dependence. The role of the inherent vacant sites present in the pyrochlore structure in the anomalous temperature dependence is also discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The vibrational spectra of the condensed phases of water often show broad and strongly overlapping spectral features which can make spectroscopic interpretations and peak assignments difficult. The Raman spectra of hydrogen‐ordered H2O and D2O ice XV are reported here, and it is shown that the spectra can be fully interpreted in terms of assigning normal modes to the various spectral features by using density functional theory (DFT) calculations. The calculated lattice‐vibration spectrum of the experimental antiferroelectric structure is in good agreement with the experimental data whereas the spectrum of a ferroelectric Cc structure, which computational studies have suggested as the crystal structure of ice XV, differs substantially. Moreover, the calculated coupled O–H stretch spectrum also seems in better agreement with the experiment than the calculated spectrum for the Cc structure. Both the hydrogen bonds as well as the covalent bonds appear to be stronger in hydrogen‐ordered ice XV than in the hydrogen‐disordered counterpart ice VI. A new type of stretching mode is identified, and it is speculated that this kind of mode might be relevant for other condensed water phases as well. Furthermore, the ice XV spectra are compared to the spectra of ice VIII which is the only other high‐pressure phase of ice for which detailed spectroscopic assignments have been made so far. In summary, we have established a link between crystallographic data and spectroscopic information in the case of ice XV by using DFT‐calculated spectra. Such correlations may eventually help interpreting the vibrational spectra of more structurally‐disordered aqueous systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
We report results of a Raman study on single crystals of 16 boracites M3B7O13X (M = Cr,Co,Ni,Cu,Zn,Cd; X = Cl,Br,I) over a broad temperature range. The Raman modes for all boracites in their high‐temperature prototype cubic (F3c) phase are compared. With decreasing temperature, most (but not all) compounds present a transition to the low‐temperature orthorhombic phase (Pca21) or to a sequence of orthorhombic, monoclinic (Pa), and trigonal (R3c) phases. The variations of the Raman spectra through different phases are studied in detail. Special attention is paid to the temperature hysteresis near the transitions and the dependence of transition temperature on the direction of crystal growth for the same material. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Raman spectra of the tetragonal structure of paratellurite TeO2 have been revisited avoiding anomalous polarization‐selection‐rules violations previously observed and due to optical activity. We present a complementary hyper‐Raman scattering study of paratellurite. Wavenumber and symmetry assignments are given for all expected 21 Raman active optical branches, except one LO component (out of the eight expected TO–LO pairs) of the polar doublet E modes. Also, the four expected hyper‐Raman active A2 (TO) modes have been observed. Moreover, we have observed a strong Kleinman‐disallowed hyper‐Rayleigh signal, which is tentatively assigned as a first evidence of hyper‐Rayleigh optical activity. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
We study ‐dimensional half‐maximal flux backgrounds using exceptional field theory. We define the relevant generalised structures and also find the integrability conditions which give warped half‐maximal MinkowskiD and AdSD vacua. We then show how to obtain consistent truncations of type II / 11‐dimensional SUGRA which break half the supersymmetry. Such truncations can be defined on backgrounds admitting exceptional generalised structures, where , and N is the number of vector multiplets obtained in the lower‐dimensional theory. Our procedure yields the most general embedding tensors satisfying the linear constraint of half‐maximal gauged SUGRA. We use this to prove that all half‐maximal warped AdSD and MinkowskiD vacua of type II / 11‐dimensional SUGRA admit a consistent truncation keeping only the gravitational supermultiplet. We also show to obtain heterotic double field theory from exceptional field theory and comment on the M‐theory / heterotic duality. In five dimensions, we find a new SO(5, N ) double field theory with a ‐dimensional extended space. Its section condition has one solution corresponding to 10‐dimensional supergravity and another yielding six‐dimensional SUGRA.  相似文献   

7.
[Ca(H2O)6]Cl2 between 93 and 300 K possesses two solid phases. One phase transition (PT) of the first‐order type at = 218.0 K (on heating) and = 208.0 K (on cooling) was determined by differential scanning calorimetry. Thermal hysteresis of this PT (10 K), as well as the heat flow anomaly sharpness, suggests that the detected PT is a first‐order one. The entropy change value [ΔS ≈ 8.5 J mol−1 K−1 ≈ Rln(2.8)] associated with the observed PT suggests a moderate degree of molecular dynamical disorder of the high‐temperature phase. The temperature dependencies of the full width at half maximum values of the infrared band are due to ρ(H2O)A2 mode (at 205 cm−1), and two Raman bands are arising from τ(H2O)E and τ(H2O)A1 modes (at ca. 410 and 682 cm−1, respectively), suggesting that the observed PT is associated with a sudden change of speed of the H2O reorientational motions. The estimated mean value of activation energy for the reorientation of the H2O ligands in the high‐temperature phase is ca. 11.4 kJ mol−1 from Raman spectroscopy and 11.9 kJ mol−1 from infrared spectroscopy. X‐ray single‐crystal diffraction measurement and spectroscopic studies (infrared, Raman and inelastic neutron scattering) also confirm that [Ca(H2O)6]Cl2 includes two sets of differently bonded H2O molecules. Ab initio calculations of the complete unit cell of one molecule of calcium chloride with a different number of water molecules (2, 4 and 6) have also been carried out. A comparison of Fourier Transform Infrared (FT‐IR), Fourier Transform Raman Scattering (FT‐RS) and inelastic neutron scattering spectroscopies results with periodic density functional theory calculations was used to provide a complete assignment of the vibrational spectra of [Ca(H2O)6]Cl2. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Albite is one of the most common minerals in the Earth's crust, and its polymorphs can be found in rocks with different cooling histories. The characteristic spectrum of vibration of the albite mineral reflects its structural Si/Al ordering. In this study, we report on the comparison between the Raman spectra measured on a natural and fully ordered (as deduced on the basis of single‐crystal X‐ray diffraction data) ‘low albite’, NaAlSi3O8, and those calculated at the hybrid Hartree–Fock/density functional theory level by employing the WC1LYP Hamiltonian, which has proven to give excellent agreement between calculated and experimentally measured vibrational wavenumbers in silicate minerals. All the 39 expected Ag modes are identified in the Raman spectra, and their wavenumbers and intensities, in different scattering configurations, correspond well to the calculated ones. The average absolute discrepancy is ~3.4 cm−1, being the maximum discrepancy |Δv|max ~ 10.3 cm−1. The very good quality of the WC1LYP results allows for reliable assignments of the Raman features to specific patterns of atomic vibrational motion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A single particle obeys the Dirac equation in spatial dimensions and is bound by an attractive central monotone potential that vanishes at infinity. In one dimension, the potential is even, and monotone for The asymptotic behavior of the wave functions near the origin and at infinity are discussed. Nodal theorems are proven for the cases and , which specify the relationship between the numbers of nodes n1 and n2 in the upper and lower components of the Dirac spinor. For , whereas for if and if where and This work generalizes the classic results of Rose and Newton in 1951 for the case Specific examples are presented with graphs, including Dirac spinor orbits   相似文献   

10.
The standard model has for massless quarks and leptons “miraculously” no triangle anomalies due to the fact that the sum of all possible traces — where and are the generators of one, of two or of three of the groups and U (1) — over the representations of one family of the left handed fermions and anti‐fermions (and separately of the right handed fermions and anti‐fermions), contributing to the triangle currents, is equal to zero. 1 - 4 It is demonstrated in this paper that this cancellation of the standard model triangle anomaly follows straightforwardly if the and are the subgroups of the orthogonal group , as it is in the spin‐charge‐family theory. 5 - 22 We comment on the anomaly cancellation, which works if handedness and charges are related “by hand”.  相似文献   

11.
Micro‐Raman spectroscopy was used to investigate the main deformation micromechanisms of isotactic polypropylene uniaxially stretched at constant temperature (T = 30 °C) under a constant true strain rate ( = 5.10−3 s−1). To accurate measurements namely to be free of the recovering phenomenon which causes in most of the cases interference during post‐mortem analysis, we introduced a new experimental setup combining a Raman spectrometer with a tensile machine piloted by the VidéoTraction™ system. Microstructure is described by essential parameters such as the crystallinity index, the macromolecular orientation both in the crystalline and the amorphous phase, and distribution of the internal stress at the chemical bonds scale. For each, a well‐tried Raman spectral criterion was used. Cross‐checking of these results, obtained with a minimum of tensile tests, allows a more complete understanding of the deformation micromechanisms of semi‐crystalline polymer. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
We first review the Coset Space Dimensional Reduction (CSDR) programme and present the best model constructed so far based on the , 10‐dimensional E8 gauge theory reduced over the nearly‐Kähler manifold with the additional use of the Wilson flux mechanism. Then we present the corresponding programme in the case that the extra dimensions are considered to be fuzzy coset spaces and the best model that has been constructed in this framework too. In both cases the best model appears to be the trinification GUT .  相似文献   

13.
We compute the Hodge numbers for the quotients of complete intersection Calabi‐Yau three‐folds by groups of orders divisible by 4. We make use of the polynomial deformation method and the counting of invariant Kähler classes. The quotients studied here have been obtained in the automated classification of V. Braun. Although the computer search found the freely acting groups, the Hodge numbers of the quotients were not calculated. The freely acting groups, G, that arise in the classification are either or contain , , or as a subgroup. The Hodge numbers for the quotients for which the group G contains or have been computed previously. This paper deals with the remaining cases, for which or . We also compute the Hodge numbers for 99 of the 166 CICY's which have quotients.  相似文献   

14.
This article explores possible embeddings of the Standard Model gauge group and its matter representations into F‐theory. To this end we construct elliptic fibrations with gauge group as suitable restrictions of a ‐fibration with rank‐two Mordell‐Weil group. We analyse the five inequivalent toric enhancements to gauge group along two independent divisors W3 and W2 in the base. For each of the resulting smooth fibrations, the representation spectrum generically consists of a bifundamental , three types of representations and five types of representations (plus conjugates), in addition to charged singlet states. The precise spectrum of zero‐modes in these representations depends on the 3‐form background. We analyse the geometrically realised Yukawa couplings among all these states and find complete agreement with field theoretic expectations based on their U(1) charges. We classify possible identifications of the found representations with the Standard Model field content extended by right‐handed neutrinos and extra singlets. The linear combination of the two abelian gauge group factors orthogonal to hypercharge acts as a selection rule which, depending on the specific model, can forbid dangerous dimension‐four and ‐five proton decay operators.  相似文献   

15.
We provide a model‐independent argument indicating that for a black hole of entropy N the non‐thermal deviations from Hawking radiation, per each emission time, are of order , as opposed to . This fact abolishes the standard a priory basis for the information paradox.  相似文献   

16.
[Ba(H2O)3](ClO4)2 between 90 and 300 K possesses two solid phases. One phase transition of the first‐order type at: = 211.3 K (on heating) and = 204.6 K (on cooling) was determined by differential scanning calorimetry. The entropy change value (ΔS ≈ 15 Jmol–1 K–1), associated with the observed phase transition, indicates a moderate degree of molecular dynamical disorder. Both, vibrational and reorientational motions of H2O ligands and ClO4 anions, in the high‐temperature and low‐temperature phases, were investigated by Fourier transform far‐infrared and middle‐infrared and Raman light scattering spectroscopies. The temperature dependences of the full‐width at half‐maximum values of the bands associated with ρw(H2O) mode, in both infrared (~570 cm–1) and Raman light scattering (~535 cm–1) spectra, suggest that the observed phase transition is not associated with a sudden change of a speed of the H2O reorientational motions. Ligands reorient fast, with correlation time of the order of several picoseconds, with a mean activation energy value Ea = 5.1 kJ mol–1 in both high and low temperature phases. On the other hand, measurements of temperature dependences of full‐width at half‐maximum values of the infrared band at ~460 cm–1, associated with δd(OClO)E mode, and Raman band at ~1105 cm–1, associated with νas(ClO)F2 mode, revealed the existence of a fast ClO4 reorientation in phase I and in phase II, with the Ea(I) and Ea(II) values equal to 8.0 and 6.5 kJ mol–1, respectively. These reorientational motions of ClO4 are slightly distorted at the TC. Fourier transform far‐infrared and middle‐infrared spectra with decreasing of temperature indicated characteristic changes at the vicinity of PT at TC, which suggested lowering of the crystal structure symmetry. All these experimental facts suggest that the discovered phase transition is associated with small change of H2O ligands and somewhat major change of ClO4 anions reorientational dynamics, and with insignificant change of the crystal structure, too. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
O. Olendski 《Annalen der Physik》2016,528(11-12):882-897
A theoretical analysis of the thermodynamic properties of the Robin wall characterized by the extrapolation length Λ in the electric field that pushes the particle to the surface is presented both in the canonical and two grand canonical representations and in the whole range of the Robin distance with the emphasis on its negative values which for the voltage‐free configuration support negative‐energy bound state. For the canonical ensemble, the heat capacity at exhibits a nonmonotonic behavior as a function of the temperature T with its pronounced maximum unrestrictedly increasing for the decreasing fields as and its location being proportional to . For the Fermi‐Dirac distribution, the specific heat per particle is a nonmonotonic function of the temperature too with the conspicuous extremum being preceded on the T axis by the plateau whose magnitude at the vanishing is defined as , with N being a number of the particles. The maximum of is the largest for and, similar to the canonical ensemble, grows to infinity as the field goes to zero. For the Bose‐Einstein ensemble, a formation of the sharp asymmetric feature on the ‐T dependence with the increase of N is shown to be more prominent at the lower voltages. This cusp‐like dependence of the heat capacity on the temperature, which for the infinite number of bosons transforms into the discontinuity of , is an indication of the phase transition to the condensate state. Some other physical characteristics such as the critical temperature and ground‐level population of the Bose‐Einstein condensate are calculated and analyzed as a function of the field and extrapolation length. Qualitative and quantitative explanation of these physical phenomena is based on the variation of the energy spectrum by the electric field.  相似文献   

18.
Ralf Hofmann 《Annalen der Physik》2015,527(3-4):254-264
Presuming that CMB photons are described by the deconfining phase of an SU(2) Yang‐Mills theory with the critical temperature for the deconfining‐preconfining phase transition matching the present CMB temperature K (SU(2)CMB), we investigate how CMB temperature T connects with the cosmological scale factor a in a Friedmann‐Lemaître‐Robertson‐Walker Universe. Owing to a violation of conformal scaling at late times, the tension between the (instantaneous) redshift of reionisation from CMB observation () and quasar spectra () is repealed. Also, we find that the redshift of CMB decoupling moves from to which questions ΛCDM cosmology at high redshifts. Adapting this model to the conventional physics of three flavours of massless cosmic neutrinos, we demonstrate inconsistency with the value Neff ~ 3.36 extracted from Planck data. Interactions between cosmic neutrinos and the CMB implies a common temperature T of (no longer separately conserved) CMB and neutrino fluids. Neff ~ 3.36 then entails a universal, temperature induced cosmic neutrino mass with . Our above results on zre and zdec, derived from SU(2)CMB alone, are essentially unaffected when including such a neutrino sector.

  相似文献   


19.
20.
Anionic species formed in mixtures of 1‐n‐butyl‐3‐methylimidazolium chloride (BMICl) with different amounts of niobium pentachloride (NbCl5) or zinc dichloride (ZnCl2) were investigated by Raman spectroscopy. In the BMICl and NbCl5 ionic mixtures the presence of the anion NbCl6 was detected for all compositions (molar fraction, X) and a mixture of this anion and the neutral Nb2Cl10 in acid ones. Two different anions were observed for basic mixtures of BMICl and ZnCl2: ZnCl42−(0 < X < 0.35) and Zn2Cl62−(X > 0.3), whereas for acidic ones three species were detected: Zn2Cl62−(X < 0.7), Zn3Cl82−(X > 0.7) and Zn4Cl102−(X > 0.7). It has also been observed that in both cases, the formation of larger anions causes a shift of the C H stretching modes to higher wavenumbers as the result of a decrease in the hydrogen bond between Cl and the hydrogens from the cation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号