首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We use Raman scattering to study phase transition in the graphitic g‐BC8 phase and graphite at high pressure up to 84 GPa. The E2g Raman active mode of graphite (G peak) can be detected up to 84 GPa. We demonstrate that there is (1) a phase transition in g‐BC8 and in graphite at 35 GPa and (2) that above 35 GPa, the g‐BC8 and graphite transform under high pressure to possibly fully sp3‐bonded, disordered hp‐BC8, and hp‐C phases. Below the phase transition, a polynomial fit to the G peak position versus pressure data yielded a quadratic relation; above the phase transition, it demonstrates linear behavior. The phase transition at high pressure in BC8 system and graphite is reversible. Quenched hp‐BC8 and hp‐C phases have the Raman spectrum typical to that of the graphitic phases. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Raman studies of nanocomposite SiCN thin film by sputtering showed that with increase of substrate temperature from room temperature to 500 °C, a transition from mostly sp2 graphitic phase to sp3 carbon took place, which was observed from the variation of ID/IG ratio and the peak shifts. This process resulted in the growth of C3N4 and Si3N4 crystallites in the amorphous matrix, which led to increase in hardness (H) and modulus (E) obtained through nanoindentation. However, at a higher temperature of 600 °C, again an increase of sp2 C concentration in the film was observed but the H and E values showed a decrease due to increased growth of the graphitic carbon phase. The whole process got reflected in a modified four‐stage Ferrari–Robertson model of Raman spectroscopy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A carbon layer deposited on an optical component is the result of complex interactions between the optical surface, adsorbed hydrocarbons, photons and secondary electrons (photoelectrons generated on the surface of optical elements). In the present study a synchrotron‐induced contamination layer on a 340 mm × 60 mm Au‐coated toroidal mirror has been characterized. The contamination layer showed a strong variation in structural properties from the centre of the mirror to the edge region (along the long dimension of the mirror) due to the Gaussian distribution of the incident photon beam intensity/power on the mirror surface. Raman scattering measurements were carried out at 12 equidistant (25 mm) locations along the length of the mirror. The surface contamination layer that formed on the Au surface was observed to be hydrogenated amorphous carbon film in nature. The effects of the synchrotron beam intensity/power distribution on the structural properties of the contamination layer are discussed. The I(D)/I(G) ratio, cluster size and disordering were found to increase whereas the sp2:sp3 ratio, G peak position and H content decreased with photon dose. The structural parameters of the contamination layer in the central region were estimated (thickness ? 400 Å, roughness ? 60 Å, density ? 72% of bulk graphitic carbon density) by soft X‐ray reflectivity measurements. The amorphous nature of the layer in the central region was observed by grazing‐incidence X‐ray diffraction.  相似文献   

4.
潘金平  胡晓君  陆利平  印迟 《物理学报》2010,59(10):7410-7416
采用热丝化学气相沉积法制备B掺杂纳米金刚石薄膜,并对薄膜进行真空退火处理,系统研究了不同退火温度对B掺杂纳米金刚石薄膜的微结构和电化学性能的影响.结果表明,当退火温度升高到800 ℃后,薄膜的Raman谱图中由未退火时在1157,1346,1470,1555 cm-1处的4个峰转变为只有D峰和G峰,说明晶界上的氢大量解吸附量减少,并且D峰和G峰的积分强度比ID/IG值变为最小,即sp2相团簇  相似文献   

5.
This paper reports a systematic study of the composition and the temperature‐dependent‐Raman spectra of Zr4+‐rich BaZrxTi1−xO3 (BZT) ceramic compositions (0.50⩽x⩽1.00). On the basis of the dielectric behavior of Zr rich BZT ceramics, the observed relaxor behavior has been hypothesized as a result of increasing long‐range interactions of nanosized, Ti4+‐rich polar regions in a Zr4+‐rich nonpolar matrix. Beyond an optimum concentration of BaTiO3 (BT) in the nonpolar matrix of BaZrO3 (x⩽0.75), a critical size and density of the polar regions is reached when the polar clusters start showing the relaxor like behavior, which finally show classical relaxor behavior for compositions with x = 0.5 and 0.6. This hypothesis is strongly supported from the Raman data on Zr‐rich BZT presented in this paper. Well‐defined BT Raman spectra for 5% BT in BZT composition were recorded, which followed completely up to the 50% Ti addition in the BZT samples. The temperature‐dependent Raman spectra collected on the BZT ceramics far beyond the dielectric transition temperatures supported the existence of the nano‐polar BT regions, like in typical relaxor samples. The full width at half‐maximum (FWHM), integrated intensity of the peaks in the Raman spectra has been analyzed to further support the conclusions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The synthesis of a new class of fluorescent carbon nanomaterials, carbon‐dot‐decorated nanodiamonds (CDD‐ND), is reported. These CDD‐NDs are produced by specific acid treatment of detonation soot, forming tiny rounded sp2 carbon species (carbon dots), 1–2 atomic layers thick and 1–2 nm in size, covalently attached to the surface of the detonation diamond nanoparticles. A combination of nanodiamonds bonded with a graphitic phase as a starting material and the application of graphite intercalated acids for oxidation of the graphitic carbon is necessary for the successful production of CDD‐ND. The CDD‐ND photoluminescence (PL) is stable, 20 times more intense than the intrinsic PL of well‐purified NDs and can be tailored by changing the oxidation process parameters. Carbon‐dot‐decorated DNDs are shown to be excellent probes for bioimaging applications and inexpensive additives for PL nanocomposites.  相似文献   

7.
Several PbZr1−xTixO3 (PZT) compositions in the proximity of the morphotropic phase boundary (MPB) were examined by means of Raman spectroscopy in the 15–800 K temperature range. Previous studies performed by other researchers using various techniques evidenced that, in the phase diagram of PZT, areas with rhombohedral/monoclinic and tetragonal/monoclinic phases coexist across the MPB. For these compositions, either long‐range or short‐range symmetry ordering of the monoclinic phase should be considered, so that no true rhombohedral–monoclinic–tetragonal phase boundary exists. In addition, the onset of antiferrodistortive phase transitions between high‐T and low‐T perovskite phases has been predicted by ab initio calculations and experimentally reported. In the present work, low‐T and high‐T Raman scattering spectra were collected on undoped PbZr1−xTixO3 with compositions x = 0.42, 0.45, 0.465, 0.48 and 0.53 in an attempt to clarify the current open issues on the phase diagram of PZT. Spectra clearly belonging to the respective phases were observed in the rhombohedral, monoclinic and tetragonal areas, thus confirming that monoclinic ordering is long‐range only for a narrow range of compositions. Raman measurements at cryogenic temperatures allowed detecting all predicted low‐T phases, including the tetragonal one. These results are in good agreement with both ab initio calculations and experimental results obtained by other authors on the same compositions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Multi‐walled carbon nanotube (MWCNT) filters have been recently synthesised which have specific molecular filtering capabilities and good mechanical strength. Optical and scanning electron microscopy (SEM) reveals the formation of highly aligned arrays of bundles of carbon nanotubes having lengths up to 500 µm. The Raman spectra of this material along with four other carbonaceous materials, commercially available single‐walled carbon nanotubes (SWCNTs) and MWCNTs, graphitised porous carbon (Carbotrap) and graphite have been recorded using two‐excitation wavelengths, 532 and 785 nm, and analysed for band positions and shape with special emphasis paid to the D‐, G‐ and G′‐bands. A major difference between the different MWCNT varieties analysed is that G‐bands in the MWCNT filters exhibit almost no dispersion, whereas the other MWCNTs show a noticeable dispersive behaviour with a change in the excitation wavelength. Spectral features similar to those of the MWCNT filter varieties were observed for the Carbotrap material. From the line shape analysis, the intensity ratio, ID/IG, of the more ordered MWCNT filter material using the integral G‐band turns out to be two times lower than that of the less ordered MWCNT filter product at both excitation wavelengths. This parameter can, therefore, be used as a measure of the degree of MWCNT alignment in filter varieties, which is well supported also by our SEM study. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Multiwalled carbon nanotubes (MWCNTs) are grafted with gold (Au) nanoparticles of different sizes (1–12 and 1–20 nm) to form Au–MWCNT hybrids. The Au nanoparticles pile up at defect sites on the edges of MWCNTs in the form of chains. The micro‐Raman scattering studies of these hybrids were carried using visible to infrared wavelengths (514.5 and 1064 nm). Enhanced Raman scattering and fluorescence is observed at an excitation wavelength of 514.5 nm. It is found that the graphitic (G) mode intensity enhances by 10 times and down shifts by approximately 3 cm−1 for Au–MWCNT hybrids in comparison with pristine carbon nanotubes. This enhancement in G mode due to surface‐enhanced Raman scattering effect is related to the interaction of MWCNTs with Au nanoparticles. The enhancement in Raman scattering and fluorescence for large size nanoparticles for Au–MWCNTs hybrids is corroborated with localized surface plasmon polaritons. The peak position of localized surface plasmons of Au nanoparticles shifts with the change in environment. Further, no enhancement in G mode was observed at an excitation wavelength of 1064 nm. However, the defect mode (D) mode intensity enhances, and peak position is shifted by approximately 40 cm−1 to lower side at the same wavelength. The enhanced intensity of D mode at 1064 nm excitation wavelength is related to the double resonance phenomenon and shift in the particular mode occurs due to more electron phonon interactions near Fermi level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The post-growth modification of diamond-like amorphous hydrogenated carbon a-C:H films by laser treatment has been studied by transmission electron microscopy and Raman spectroscopy. a-C:H films grown on Si substrates by benzene decomposition in a rf glow discharge were irradiated with 15 ns pulses of a KrF-excimer laser with fluences in the range of E=50–700 mJ/cm2. At fluences below 100 mJ/cm2 an increase in the number of graphitic clusters and in their ordering was evidenced from Raman spectra, while the film structure remained amorphous according to electron microscopy and electron diffraction observations. At higher fluences the appearance of diamond particles of 2–7 nm size, embedded into the lower crystallized graphitic matrix, was observed and simultaneously a progressive growth of graphite nanocrystals with dimensions from 2 nm to 4 nm was deduced from Raman measurements. The maximum thickness of the crystallized surface layer (400 nm) and the degree of laser annealing are limited by the film ablation which starts at E>250 mJ/cm2. The laser-treated areas lose their chemical inertness. In particular, chemical etching in chromium acid becomes possible, which may be used for patterning the highly inert carbon films.  相似文献   

11.
Polarized micro‐Raman spectroscopy was carried out on the (001) face of a 0.67PbMg1/3Nb2/3O3‐33%PbTiO3 (PMN‐33%PT) single crystal. The Raman images revealed the spatial variations of the intensity of the Raman bands, suggesting that the structure in the PMN‐33%PT single crystal varied from one micro‐area to another. When changing the polarization direction of the incident light with respect to the selected crystalline axes, the intensities of the Raman modes varied periodically. According to the Raman selection rules (RSRs), the angular dependences of the Raman modes indicated that the PMN‐33%PT single crystal is in the monoclinic phase. Furthermore, the color patterns in the Raman images were associated with the coexistence of the MA‐ and MC‐type monoclinic phases in the PMN‐33%PT single crystal. Our results provide useful information for understanding the microheterogeneity of the relaxor PMN‐xPT single crystals with compositions near the morphotropic phase boundary region. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Raman spectroscopy is widely used for the characterization of bonding type in carbon‐based materials, including carbonized surface layer in ion‐implanted polymers. Studies of the polarization properties of Raman scattering from amorphous carbonaceous materials, however, are very scarce. In this paper, we investigate the polarized Raman spectra of polymethylmethacrylate (PMMA) implanted with 50‐keV Si+ ions at fluences in the range 3.2 × 1014–1.0 × 1017 ions/cm2 and for different visible excitation wavelengths. The spectra of the implanted samples are dominated by the D‐ and G‐bands of sp2 carbon, which evidence strong carbonization of the ion‐modified layer. The multiwavelength excitation allowed us to resonantly probe the depolarization ratios for sp2 clusters of different sizes. We established that the depolarization ratio ρG of the G‐band correlates with the sp2 cluster size approaching the random orientation limit of 0.75 for the smallest clusters and a limiting value of 0.41 for the largest clusters. The experimental findings give evidence for a preferable orientation of the larger size clusters with their hexagonal planes perpendicular to the surface of the sample. A plausible explanation for such an arrangement is that the sp2 clusters form tile‐like arrangements along the ion tracks. This finding may give clues for understanding of the strong transconductance of the ion‐modified layer, and open prospects for the application of polarized Raman spectroscopy as a characterization tool for surface morphology in ion‐implanted materials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
High‐resolution Raman spectra of pyrimidine (PD) and formamide (FA) mixtures with different compositions recorded in the ring breathing region of PD (ν1 ∼ 991 cm−1) are presented. The dilution of PD with FA leads to the appearance of a new band at ν1′ ∼ 994 cm−1, which is assigned to hydrogen‐bonded PD:FA species. From a quantitative analysis of the concentration‐dependent Raman spectra, the average number of FA molecules in the first solvation sphere of PD is determined as being equal to 2. This value is supported by density functional theory (DFT) calculations: a symmetric 1:2 complex is the most stable species among various hydrogen‐bonded PD:FA clusters with stoichiometries ranging from 1:1 to 1:4. A qualitative explanation for the blue shift of the ν1 mode upon complexation is given. Additionally, we have observed not only similarities but also some differences with respect to the PD:water system. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The Raman spectra of neat propionaldehyde [CH3CH2CHO or propanal (Pr)] and its binary mixtures with hydrogen‐donor solvents, water (W) and methanol (M), [CH3CH2CHO + H2O] and CH3CH2CHO + CH3OH] with different mole fractions of the reference system, Pr varying from 0.1 to 0.9 at a regular interval of 0.1, were recorded in the ν(CO) stretching region, 1600–1800 cm−1. The isotropic parts of the Raman spectra were analyzed for both the cases. The wavenumber positions and line widths of the component bands were determined by a rigorous line‐shape analysis, and the peaks corresponding to self‐associated and hydrogen‐bonded species were identified. Raman peak at ∼1721 cm−1 in neat Pr, which has been attributed to the self‐associated species, downshifts slightly (∼1 cm−1) in going from mole fraction 0.9 to 0.6 in (Pr + W) binary mixture, but on further dilution it shows a sudden downshift of ∼7 cm−1. This has been attributed to the low solubility of Pr in W (∼30%), which does not permit a hydrogen‐bonded network to form at higher concentrations of Pr. A significant decrease in the intensity of this peak in the Raman spectra of Pr in a nonpolar solvent, n‐heptane, at high dilution (C = 0.05) further confirms that this peak corresponds to the self‐associated species. In case of the (Pr + M) binary mixture, however, the spectral changes with concentration show a rather regular trend and no special features were observed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Raman characteristics of carbon nitride films synthesized by nitrogen-ion-beam-assisted pulsed laser deposition were investigated. In addition to the D (disorder) band and G (graphitic) band commonly observed in carbon nitride films, two Raman bands located at 1080–1100 and 1465–1480 cm-1 were found from our carbon nitride films. These two bands were well matched with the predicted Raman frequencies for βC3N4 and the observed Raman bands reported for carbon nitride films, indicating their relation to carbon-nitrogen stretching vibrations. Furthermore, the relative intensity ratio of the two Raman bands to the D and G bands increased linearly with increasing nitrogen content of the carbon nitride films. Received: 30 October 2000 / Accepted: 5 February 2001 / Published online: 2 October 2001  相似文献   

16.
Nanocomposites of carbon nanotubes and titanium dioxide (TiO2) have attracted much attention due to their photocatalytic properties. Although many examples in the literature have visualized these nanocomposites by electron microscopic images, spectroscopic characterization is still lacking with regard to the interaction between the carbon nanotube and TiO2. In this work, we show evidence of the attachment of nanostructured TiO2 to multiwalled carbon nanotubes (MWNTs) by Raman spectroscopy. The nanostructured TiO2 was characterized by both full‐width at half‐maximum (FWHM) and the Raman shift of the TiO2 band at ca 144 cm−1, whereas the average diameter of the crystallite was estimated as approximately 7 nm. Comparison of the Raman spectra of the MWNTs and MWNTs/TiO2 shows a clear inversion of the relative intensities of the G and D bands, suggesting a substantial chemical modification of the outermost tubes due to the attachment of nanostructured TiO2. To complement the nanocomposite characterization, scanning electronic microscopy and X‐ray diffraction were performed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In this work we present a Raman scattering study of a specific region of the morphotropic phase boundary (MPB) of the [Pb(Mg1/3Nb2/3)O3]1−x (PbTiO3)x relaxor system. We performed low‐temperature measurement for the x = 0.4 composition in the 20–300 K temperature range, and a detailed analysis of Raman spectra of x = 0.4 and x = 0.37 compositions at 180 K. The analysis of Raman spectra indicates a structural phase transition at around 170 K for x = 0.4. The comparison of Raman data from x = 0.4 and x = 0.37 compositions suggests different phases for these samples at 180 K. These results are in accordance with the tetragonal to monoclinic structural phase transition observed in the PMN–PT MPB and contribute to improve the knowledge of the MPB of this solid solution. Additionally, we have performed the lattice dynamics phonon calculation of the (1 − x) PMN–xPT relaxor in order to best understand its complex Raman spectral properties. The normal mode analyses (at q ∼ 0) were performed by considering tetragonal symmetry for the (1 − x) PMN–xPT system and using the rigid ion model and mean field approximation. Our calculated wavenumber values are in good agreement with experimental and calculated results reported for PbTiO3 thus providing a reliable assignment of the various Raman modes. The low wavenumber modes are interpreted as arising from a lifting of the degeneracy of the vibrational modes related to Mg, Nb and Ti sites. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Diamond-like carbon films are deposited on silicon substrates at different substrate bias using ECR-CVD technique. Raman spectroscopic studies show the presence of broad G and D peaks. In contrast to the position of D peak, the G peak shows a systematic red-shift with increase in the bias voltage. From the analysis it is found that an increase in bias voltage decreases the sp2 cluster diameter. Furthermore, two additional Raman peaks at around 690 and 880 cm?1 are also observed. These peaks, forbidden in the first order Raman scattering, arise due to the breakdown of phonon selection rule in graphitic nanoclusters.  相似文献   

19.
In this work, the pyrolysis under high pressure of hydrocarbons dispersed inside a nanosized silica matrix (Aerosil) was investigated. The samples consisted of hydrophobic nanometric silica powder terminated by methyl groups with carbon contents ranging from 0.7 to 4 wt%. The pyrolysis was carried out in the temperature range from 1000 to 1600 °C under high pressure (1.25 up to 7.7 GPa) to keep the two‐dimensional distribution of carbon atoms originally at the silica grain boundaries. Evidences from Raman spectroscopy and transmission electron microscopy suggested that the resulting carbon nanostructures were actually graphene‐like nanoflakes. The size of the nanostructures calculated from the ID/IG ratio increased from 6 to 30 nm for processing temperatures increasing from 1000 to 1600 °C under pressure, respectively. The results revealed that the very good dispersion of the methyl groups inside the nanosize silica matrix, and the confinement under high pressure during the pyrolysis, played both a relevant role in the resulting carbon nanostructures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Resonance Raman and photoluminescence excitation (PLE) spectroscopies are used to study the optical properties of different types of carbon nanostructures such as carbon nanotube, nanoribbons, nanographites and graphite edges. In the resonance Raman experiments of carbon nanotubes, the (n,m) assignment is obtained by comparing the experimental and theoretical diameter and chirality dependence of the optical transitions. The influence of the environment on the optical transitions of the nanotubes is also obtained in the Raman experiments. The PLE measurements in different samples of carbon nanotubes show both direct and phonon-assisted optical transitions, and the results give new evidences that the optical transitions in nanotubes have an excitonic character, which is very strong for the low energy transitions. We also analyze the Raman spectra of nanoribbons and nanographites, showing that this technique is an important tool for defect characterization in graphitic materials, and can be used to distinguish the atomic structure of the graphite edges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号